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Fig. 1. Our method takes sparse and crudely specified keyframe sequences as motion sketches, and outputs
physically plausible motions. Dynamic movements, contact-rich behaviors, and motion timing emerge from
the computed solutions.

Animated motions should be simple to direct while also being plausible. We present a �exible keyframe-based
character animation system that generates plausible simulated motions for both physically-feasible and
physically-infeasible motion speci�cations. We introduce a novel control parameterization, optimizing over
internal actions, external assistive-force modulation, and keyframe timing. Our method allows for emergent
behaviors between keyframes, does not require advance knowledge of contacts or exact motion timing,
supports the creation of physically impossible motions, and allows for near-interactive motion creation. The
use of a shooting method allows for the use of any black-box simulator. We present results for a variety of 2D
and 3D characters and motions, using sparse and dense keyframes. We compare our control parameterization
scheme against other possible approaches for incorporating external assistive forces.
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1 INTRODUCTION
How can plausible whole-body animated motions be created using a simple interface? This ba-
sic question underlies a large body of work in character animation. Spacetime constraint meth-
ods [Witkin and Kass 1988] are a promising approach to this, based on trajectory optimization.
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2 Kim, Ling et al.

Given a set of input keyframes, including timing, the goal is to �nd a trajectory that satis�es the
keyframe constraints as well as the constraints of physics. There remain many challenges, however.
Collocation-based methods for trajectory optimization typically require advance knowledge of
the contact locations and timing, which are exactly the kind of detail that require signi�cant
iterative e�ort by animators. Alternatively, solutions based on forward simulations, i.e., shooting
methods, allow contacts to naturally emerge during the movement. However, these su�er from
being constrained to the space of physically-feasible motions. This is thus incompatible with the
idea that animators often want to create physically-impossible movements, and should not be
burdened with trying to determine the physical feasibility of a set of keyframes.
In this paper, we develop a robust and �exible trajectory optimization method through the

introduction of auxiliary assistive forces, whose use is modulated and minimized over time through
regularization. Intuitively, auxiliary assistive forces help to smooth the optimization landscape,
thereby facilitating more e�cient generation of natural motions. We use a shooting-based solver,
realized with a derivative-free optimization method. Taken together, these choices allow for a
method that is �exible in multiple respects: motions can be physically realizable or not; emergent
behavior can be realized in between keyframes where feasible; motions can be speci�ed using sparse
or dense keyframes; keyframe timing can be optimized; black-box simulators can be exploited; the
system produces predictable results via the keyframe-based objective; and the system allows for
near-interactive motion design.

Our contributions are as follows:
• We introduce a skeleton-driven character animation framework that allows crude keyframe input
to be transformed into plausible simulation-driven movements. It is particularly capable in its
support of: (a) physically-impossible motions; (b) optimization of keyframe timing; (c) emergent
contact behavior; and (d) emergent behaviors in between sparse keyframes.

• We introduce a novel and compact parameterization of external assistive forces, consisting of a
time-indexed scalar modulation of the set of keypoint forces. These forces are de�ned by a set
of linear spring-and-dampers that pull a character towards a target pose that is a simple linear
interpolation of the keyframes.

2 RELATEDWORK
The generation of physics-based movement is commonly cast as an optimization problem, involving
the known physics, the applied control actions, and an objective function for the motion. One
possible solution involves computing a controller or control policy, which computes the control
actions as a function of the state and therefore can dynamically react to changes in the environment.
An alternative approach is to perform trajectory optimization, which computes the best motion
trajectory forward from a �xed initial state, typically for some �xed time horizon. While we review
related work for both of these approaches, we emphasize trajectory optimization methods as our
work belongs to this latter category.

Controllers. Controllers for physics-based motions are often authored with the help of motion
capture data, which can be treated as an imitation objective. This has a long history in many
reference-motion tracking controllers, e.g., [Ding et al. 2015; Faloutsos et al. 2001; Ha et al. 2012; Yin
et al. 2008; Zordan et al. 2014]. Recent work has seen a signi�cant adoption in deep reinforcement
learning (RL) based approaches. Learned control policies can either be speci�c to a given reference
motion [Peng et al. 2018, 2017] or be conditioned on a near-future window of the upcoming
reference motion [Bergamin et al. 2019; Chentanez et al. 2018; Park et al. 2019; Won et al. 2020].
Motion control trained on motion capture data can also be abstracted into learned latent variable
representations which can then be reused in new ways even in the absence of an input reference
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motion, e.g., [Merel et al. 2020]. There is a long history of reference motion tracking controllers in
the literature. Human coaching hints can also be leveraged [Ha and Liu 2014]. Training deep RL
controllers to produce high-quality motions based on non-imitation objectives takes extra care and
attention, e.g. using a curriculum that may use external assistance during training, e.g. [Yu et al.
2018]. It is also typically a slow o�-line process.

Assisted Control. The use of moderate external assistance has been explored in the design of
motion-tracking controllers, in ways which do not necessitate o�ine learning. World-space joint
control, can be combined with moderate external torque control of the root link [Wrotek et al. 2006;
Zordan and Hodgins 2002] (or the feet [da Silva et al. 2017]), and is shown to provide reasonable
adaptations to terrain changes during locomotion. A related approach is demonstrated for use in
�lm production [Chapman et al. 2020]. The general approach of allowing for a degree of external
assistance is made more adaptable in [Levine and Popović 2012], where a quadratic programming
problem is solved at every timestep in order to allow for better response and local anticipation of
the next frame of the reference motion. These methods are strictly reactive in nature, with a focus
on remaining balanced, and therefore they are not directly applicable to many of the motions that
we seek to generate. Robotics controllers can also be designed to leverage external assistance as
needed [Maekawa et al. 2018]. The perceptual impact of physics violations has been explored in
some detail for animation, e.g., [Bai et al. 2016; Barzel et al. 1996; Reitsma and Pollard 2003].

Trajectory Optimization. Since the original work on spacetime constraints [Witkin and Kass 1988],
a wide variety of methods have been proposed towards making trajectory optimization approaches
more �exible and practical. The complexities to be overcome are manifold: handling of contacts
and contact timing, access to equations of motion vs. black-box simulation, scalability to full-body
dynamics; complex optimization landscapes, and fragile behavior in the face of ill-posed or infeasible
problems. Multiple e�orts introduce the use of simpli�ed models to produce a better-conditioned,
simpler problem, e.g., [Bai et al. 2016; Jain et al. 2009; Kry et al. 2012; Kwon et al. 2020; Liu and
Popović 2002; Liu et al. 1994; Mordatch et al. 2012]. This is often based on a centroidal dynamics
model, where the movement can be well-characterized at any point in time by the center of mass
position, an overall orientation, and the total linear and angular momentum. Contact timings are
often assumed to be known in advance, are optimized as a separate phase, or are introduced with a
motion-phase structure. Simpli�ed models can also be leveraged in editing motion capture data via
momentum and force edits [Sok et al. 2010]. This leverages a trajectory optimization technique
based on normalized dynamics and knowledge of contacts and inverse dynamics. A related model
is the PhysIK system [Rabbani and Kry 2016], which allows for physically-plausible keyframing by
extending inverse kinematics-based keyframes to include center-of-mass and intertia handles in a
2D setting. The keyframes fully specify the contact con�gurations and there is no optimization
involved.
Trajectory optimization methods that have access to the equations of motion and derivatives

have the opportunity to be uniquely e�cient, although they need to circumvent the challenges
posed by contact discontinuities. One approach is to have a derivative-free outer loop optimization
that de�nes the contact modes, wrapped around an inner-loop trajectory optimization using the
now-known contact structure [Wampler and Popović 2009]. An alternate treatment of the hybrid
contact optimization problem uses sequential quadratic programming and includes contact forces
as optimization parameters [Posa et al. 2014]. Intermediate optimization phases that relax the
constraints are found to be important for avoiding problematic local minima. Trajectory optimiza-
tion through contact discontinuities can be tackled using numerical di�erentiation and smoothed
contact dynamics, with further measures taken to achieve greater computational e�ciency [Han
et al. 2016]. This method can adjust footstep contacts and timings, and is demonstrated in the
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(a) System Overview (b) Simulation Step

Fig. 2. (a) Visualization of our optimization pipeline, the optimization parameters Φ, and their interpolation.
They correspond to the per-timestep residual PD target ∆\C , assistive force modulation VC , and the keyframe
timings, ∆C: . (b) Internal joint actuation and modulated external assistive forces are used in combination.

context of tracking existing reference motions. Short-horizon trajectory optimization problems are
shown to be solved at near-interactive rates using an iterative linear quadratic Gaussian (iLQG)
method [Tassa et al. 2012], together with �nite-di�erence derivatives, suitable contact approxima-
tions, and update regularization. Solutions to trajectory optimization for multi-contact settings
continue to improve with dedicated packages such as Crocoddyl [Mastalli et al. 2020] for humanoid
robotics.
Shooting methods o�er an alternative approach to collocation-based trajectory optimization.

They can leverage black-box simulations and can avoid many of the issues related to discontinuities,
as long as they can be simulated. External forces were used in conjunction with shooting methods
over 25 years ago, limited to basic walk cycles [van de Panne and Lamouret 1995]. Sample-based
solutions for contact-rich motions have been shown to be a feasible solution for motion-capture
imitation tasks [Liu et al. 2010] and online short-horizon trajectory optimization solutions for tasks
de�ned by locomotion and balance objectives [Hämäläinen et al. 2014; Rajamäki and Hämäläinen
2018]. Derivative-free optimization methods such as covariance-matrix adaptation (CMA) have
been used o�ine to compute optimized motion trajectories for a variety of highly dynamic motions,
e.g., [Al Borno et al. 2012, 2017]. It is further possible to optimize for a diverse range of motions for
given tasks [Agrawal et al. 2013]. Physically impossible motions are generally outside of the scope
of the optimization methods described above. Our work considers keyframe-based motions that
may be physically-infeasible, as enabled by the proposed assistive force modulation.

3 METHOD
The core components of our proposed method are: (1) the use of external assist as realized via
forces, modulated over time, that pull a character towards its corresponding keyframe-interpolated
pose; (2) a framework that simultaneously optimizes actions, the external assist modulations, and
keyframe timing; and (3) a cost function that regularizes keyframe errors, internal actions, external
assist used, and keyframe timing. Figure 2a provides a high-level overview of our system, including
the simulation, the optimization, and the free parameters of the optimization. Figure 2b shows how
the external forces are integrated into the simulation.
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Flexible Motion Optimization with Modulated Assistive Forces 5

3.1 Notation
We describe our method in a 2D setting to keep the notation compact. However, our system
implements the straightforward 3D generalization of the method. We begin with a rigid-body
character equipped with � joints. In 2D settings, � is equal to the size of the character’s action space,
since all joints must only rotate along a single axis. To animate this character, the user de�nes a
sequence of  + 1 keyframes1 q̂ = {@̂0, @̂1, · · · , @̂ } that roughly sketches the desired character poses
over time. A pose @ 2 ⇣ = R� +2+1 consists of the global position G 2 R2, orientation k 2 [�c, c ),
and joint angles \ 2 R� . Note that joint velocities are not included in the keyframe de�nition.
The task of our system is to compute a trajectory q = {@0,@1, · · · ,@) } over the horizon of ) + 1

timesteps, such that the sequence of input keyframes q̂ is realized over the course of the trajectory.
The timing of each keyframe can be speci�ed in advance or optimized as a free parameter, as we
discuss later. For example, one can specify for keyframe @̂: to be realized at timestep C: , such that
the output trajectory satis�es @C: = @̂: . We assume that keyframes also describe the desired start
and end states, meaning @0 = @̂0 and @) = @̂ .

A linearly-interpolated trajectory q̂0,1, · · ·,Z = {@̂0, @̂1, · · · , @̂) } given speci�ed keyframes will have
@̂C: = @̂: as required and

@̂C =
(C:+1 � C )@̂C: + (C � C: )@̂C:+1

C:+1 � C:
(1)

for C: < C < C:+1. Figure 2a illustrates this interpolation strategy.
To make the motion look physically plausible, an animator often needs to spend signi�cant e�ort

designing a dense set of keyframes carefully. This motivates the use of trajectory optimization to
generate a suitable trajectory:

minimize � (&,* ) =
)X
C=0

; (@C ,DC )

subject to @C+1, §@C+1 = 5 (@C ,DC , §@C )
@C: = @: for : 2 0, 1, · · · , 
§@0 = 0

where D 2 U is the actuation from the set of actuators attached on the joints of the characters,
; : ⇣ ⇥ * ! R is a user de�ned cost function and 5 : ⇣ ⇥ )⇣ ⇥ * ! ⇣ ⇥ )⇣ describes the
physical laws the characters will follow to evolve the state. Keyframe timing can also be optimized
by treating C: as free variables.

3.2 Internal Action Parameterization
The internal actions, ∆\C , form a key part of the optimization, and consists of values for each joint,
sampled at regular time intervals, XC , for a total of =0 values per joint. =0 and XC are parameters that
the user can adjust depending on the length of the input keyframes and the desired granularity
of the motion. We assume that the total number of internal actions is more than that of horizon
length ) + 1, otherwise the optimized motion may not cover the entirety of the input keyframes. In
our experiments, we �x XC to 20, as we �nd higher frequency actions not needed for our keyframe
scenarios. =0 is set to be larger than needed, as unused internal actions are ignored when the last
keyframe checkpoint has been reached. Please refer to Table 1 for details on how =0 is set for
di�erent motions.

1We use  + 1 instead of  to simplify notation. Similarly, our horizon is) + 1 steps instead of) steps.
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The internal actions are then linearly interpolated to yield a continuous function ∆\ (C ), as shown
in Figure 2a. Importantly, the number of free parameters with respect to internal actions is inde-
pendent of keyframe timings. This allows both actions and timings to be optimized simultaneously
without an outer optimization loop. We use proportional-derivative (PD) control to actuate the
character. The actions, ∆\C 2 [�c, c )� then specify residual PD target angles. At each timestep C ,
torques are computed as

gC = :�? (\̂C + ∆\C � \C ) � :�3 §\C , (2)

where :�? and :�3 are joint PD gains for the PD controller and \ and §\ are the joint angles and joint
velocities of the simulated character.

3.3 Modulated Assistive Forces
External assistive forces pull a character towards it corresponding the target pose as de�ned by a
simple linear interpolation of the keyframes over time. This is achieved by pulling each character
keypoint towards its counterpart on the target pose, as shown in Figure 2b. The forces are computed
using a linear spring-damper model. Using the assistive forces, a character can be animated as a
ragdoll, loosely tracking the linearly interpolated reference trajectory.
More formally, we use a set of # keypoints position on the links of the articulated character,

[?0, ?1, · · · , ?#�1] where ?8 2 R2. These can be computed from a pose @ via forward kinematics.
The external force 58,C 2 R2 for keypoint 8 at timestep C is computed as a result of simulating a
spring-damper system based on the distance between reference keypoint position ?̂8,C 2 R2 and
current keypoint position ?8,C 2 R2. Finally, this force is modulated by a scalar, VC :

58,C = VC
⇣
:!? (?̂8,C � ?8,C ) � :!3 §?8,C

⌘
, (3)

where :!? and :!3 are linear spring and damper sti�ness coe�cients respectively, and VC is a modu-
lation parameter, which we discuss below. The :? and :3 constants are set to be proportional to the
mass of the link that the keypoint belongs to. During each timestep, we compute the spring-damper
force for each keypoint of the character and apply all of the external forces 5C 2 R2# together, along
with joint torques gC 2 R� of the character. We note that while a single 6-DoF linear-plus-angular
springs-and-dampers could also be used to bring two links into correspondence, this has the extra
complexity of needing to introduce another hyperparameter to balance linear and angular forces.
Our set of linear keypoint springs-and-dampers achieves the same objective in a simpler fashion.
Furthermore, the optimization process has some �exibility with respect to the placement of the
keypoints. For all our results, the keypoints are placed at the center of mass of each link, as a simple
default placement. In order to understand the impact of keypoint placement, we also experimented
with as few as two keypoints fox Luxo2D, at the head and the foot. The optimization procedure
generates similar solution modes and comparable motion quality as the default keypoint placements
for most scenarios.
The scalar VC 2 [0, 1], de�nes the assistive force coe�cient that modulates the magnitude of the

assistive forces as a form of action. Similar to actions, they are anchored in time and we optimize
for # = [V0, VXC , · · · , V(=0�1)XC ], where VC is piecewise constant for each corresponding time interval,
XC , as shown in Figure 2a.

3.4 Keyframe Timing
In our framework, keyframe timing can either be de�ned by the animator or optimized as a free
parameter. Our method automatically �nds the most suitable keyframe timing for a given interval
if it is not speci�ed. More formally, we introduce variables ∆t = [∆C1,∆C2, · · · ,∆C ] where we refer
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Flexible Motion Optimization with Modulated Assistive Forces 7

to each entry ∆C: as the time-to-arrival. These time-to-arrival values represent the time between
the :�1th and : th keyframes, i.e. C: = C:�1 + ∆C: . The �rst keyframe timing is de�ned to be C0 = 0
and we set the character’s initial pose to match the �rst keyframe. By default, the user can provide
lower and upper bounds for ∆C: to limit the search space. When designing more delicate keyframe
motions, the user can optionally provide a precise time-to-arrival value for each individual keyframe
interval. In contrast to spacetime constraints methods, keyframe timing is used to formulate an
objective minimization problem in our system, as opposed to serving as hard constraints.

3.5 Objective Function
Our trajectory optimization problem treats the keyframes as soft spacetime constraints. We use
weighted keyframe errors to penalize trajectories that deviate from the input keyframes q̂. We also
introduce penalty terms associated with parameters to achieve the following desiderata: excessive
assists should be avoided to prevent completely non-physical motions; character actions should
have moderate magnitude lest the resulting action might be unnatural; and, �nally, excessively
long-duration keyframe spacing should be avoided.

More formally, we associate weightF: 2 [0, 1] for every keyframe such that the importance of
each keyframe can be taken into account. For example, the user may wish to set the �rst keyframe’s
weight F0 to 0, given that @0 = @̂0 is always true since we initialize our character at the �rst
keyframe. Our free variables for the optimization are Φ = {∆) , #,∆t} and the �nal cost function
expressing the aforementioned desiderata is written as follows:

� (Φ) = � (∆) , #,∆t)

=
 X
:=0

F: | |@̂: � @C: | |2

|                 {z                 }
⇢KF

+ _V
)X
C=0

| |VC | |2

|        {z        }
⇢assist

+ _∆\
)X
C=0

| |∆\C | |2

|            {z            }
⇢internal

+ _∆C
 X
:=1

| |∆C: | |2

|           {z           }
⇢timing

(4)

⇢KF is the keyframe error. ⇢assist is a regularizer for external assist. The ⇢internal term regularizes
large actions so as to discourage rapid change. Finally, ⇢timing regularizes the keyframe timing. Note
that keyframe timing a�ects the objective function in multiple ways. Aside from the ⇢timing term,
it also impacts the timing of the keyframe targets q̂. _V , _∆\ , and _∆C are non-negative penalty
weights corresponding to the regularization terms.

3.6 Optimization
We use a derivative-free continuous optimization method, covariance matrix adaptation (CMA-
ES). To facilitate a more interactive motion design process, we further introduce a horizon-based
curriculum. This allows for immediate display of initial results, with updates being shown as the
optimization proceeds. In this curriculum, the trajectory optimization is performed in stages with
growing number of keyframes. The �rst stage consists of the initial and the second keyframe, i.e. the
�rst keyframe interval. The physics simulation is terminated when the timing corresponding to
the second keyframe has been reached. At this point, the �rst optimized motion segment is ready
to be displayed to the user.

The curriculum advances to the next stage when the CMA-ES variance drops below a prede�ned
threshold. The threshold is a hyperparameter which we set to be one-fourth of the initial variance
in all of our experiments. Intuitively, after the variance converges to a small value, it is unlikely to
discover a signi�cantly better motion in the current optimization round. In the new curriculum
stage, we set the optimization parameters associated with the previous stages to have a lower
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(a) Input: Sparse
horizontal displacement

(b) Output: Single large hop (c) Output: Large + small hop

(d) Output: Two medium hops (e) Output: Forward roll (f) Output: Small + large hop

Fig. 3. An example of generating diverse motions from a single set of sparse horizontal displacement
keyframes.

(a) Input: Vault (b) Output: One-shot vault (c) Output: Stops on the
platform midway

(d) Input: Walk cycle (e) Output: Reference
keyframes are tracked closely

Fig. 4. Folk2D walk cycle and vault motions specified with dense keyframes.

variance, so that the optimizer builds on top of the existing solution. The entire optimization process
is completed when the �nal keyframe is covered by the curriculum.

4 RESULTS
We present a large variety of examples in order to demonstrate emergent behaviors, physical and
infeasible motions, and contact-rich movements. The supplementary video provides the best way
to view the results. Additional details are given in the appendices for hyperparameters (A), user
interface (B), the character models (C), implementation details (D), the horizon curriculum (E),
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Flexible Motion Optimization with Modulated Assistive Forces 9

(a) Folk2D Wall Flip

(b) Desk2D Wall Jump

(c) Boxy Supine Getup

(d) Boxy Rotate Back Flip

(e) Boxy Sit Down on SIGGRAPH Le�ers

Fig. 5. Our method can generate highly dynamic motions and 3D motions. The le�most column shows the
keyframes for each motion. The optimized trajectories are shown from le� to right in each row.

sensitivity to CMA-ES population size (F), assist-vs-tracking regularization (G), and a visualization
of the assist modulation over time (H).

4.1 Emergent Behaviors
Given crude and sparse keyframes, our trajectory optimization method is capable of generating
compatible motions. Since sparse keyframes may specify an under-constrained optimization prob-
lem, the optimized solutions can be imaginative and diverse. In many cases, these motions contain
complex contact patterns, which can be di�cult to �nd for existing keyframe-based methods
without meticulous keyframe design.

In Figure 3, the input is a set of sparse horizontal displacement keyframes for Luxo2D. The
result of optimization is a diverse set of emergent and natural behaviors. Additional variations
can be synthesized by adjusting the time-to-arrival and assist penalty parameters. These motions
are shown in Figure 3d-3f. A smaller time-to-arrival generally promotes faster motions and a
larger assist penalty encourages more natural motions. The forward roll strategy in Figure 3e
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10 Kim, Ling et al.

demonstrates the �exibility of our method in handling complex contact patterns. Figure 4a-4c show
another example of emergent behavior. In the second variation, Folk discovers the strategy of using
the vaulting platform as a intermediate foothold, in order to perform a more balanced landing.
Our method also extends to dense-keyframe setups. When necessary, this allows artists to

provide additional keyframes to precisely control the character behavior during particular motion
segments. Figure 4 shows a six-keyframe walk cycle for the Folk character over a medium sized
block. Through this example, we note that our method is capable of generating trajectories which
track the carefully designed input keyframe sequences.

4.2 Impossible Motions
Artists often require animated characters to perform motions exaggerated beyond the limitations
of physical laws. This is particularly challenging for existing optimization methods which are
often designed to synthesize physically feasible motions. In contrast, in addition to physically
feasible motions, our method is able to generate trajectories that are not entirely physical. Although
these impossible motions can only be performed under the assistance of external forces, the overall
motion quality remains reasonable due to the regularization e�ecct of the assist penalty in the
objective function. Figure 7 and Figure 8 show Luxo2D jumping onto platforms beyond their
physical capabilities. For physically feasible motions, we observe that our framework generally
produces motions that are not overly dependent on the external assistive forces. In some cases,
the optimized trajectories are not impacted at all when we disable the assistive forces at run-time.
Section 5 discusses the di�erence between impossible and physically feasible motions in detail.

4.3 Contact-Rich Movements
We are able to generate highly dynamic contact-rich motions using our framework. We synthesize
various wall �ip and wall jump trajectories using sparse keyframes. Figure 5a and 5b are two
examples of complex movements. Note that in Figure 5a, the second keyframe intersects the wall.
Despite this, the output trajectory is a clean collision as a result of the physics simulation. Figure 5b
shows an example where the Desk2D character is able to use the mini-footholds to escape the
con�nement of the walls. These motions typically require meticulous �ne-tuning in traditional
kinematic keyframe animations. In contrast, our method seamlessly integrates physical interactions
with the environment into the optimization process. Our method also compares favorably against
other methods that learn physically-based controllers. For example, reward-based reinforcement
learning is likely to produce unnatural motions or to fail entirely in the absence of signi�cant
reward engineering.

4.4 3D Motions
We also synthesize multiple motions for 3D characters. Even with relatively few keyframes, we can
generate various getting-up, sitting-down, and �ipping motions for Boxy, as shown in Figure 5.
These motions contain an additional yaw-rotation parameter as part of the keyframe speci�cation,
which allows the character to navigate in the G~-plane. Note that this is not the same as fully-
parameterized 3D motions, which would allow roll-rotations along with pitch and yaw. Please refer
to the supplementary video for visual demonstrations of additional motions.
While our system can generate 3D motions, it has a number of limitations. Firstly, it takes

substantially longer to generate 3D motions compared to 2D motions. This is problematic especially
when interactive use of the system is desired. In 3D, the search space for the optimization problem
grows as additional degrees of freedom are introduced. The motion trajectories that can be collected
in the same amount of time represent a smaller fraction of the search space. The induced sparsity
can be problematic for statistical optimization methods such as CMA, and is commonly referred to
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(a) Assist Parameterization Comparison (b) Evolution of Assistive Forces

Fig. 6. (a) Comparison of performance between global V and time-indexed V . Each point represents a solution.
Ideal solutions (small assist, small error) reside on the bo�om-le� corner. (b) Evolution of assistive force usage
during optimization, as measured by the mean value of V2C used throughout the motion. The optimization
initially explores large values of VC and then gradually decreases the reliance on assistive force.

(a) Keyframes (b) TV approach (d=47) (c) GV approach (d=36)

Fig. 7. Comparison of the character performing the “jump-hop” task according to di�erent external assist
parameters. This scenario involves an physically impossible jump followed by a physically-feasible hop.

as the dimensionality curse. We can potentially resolve this by using a smarter optimization scheme,
such as dividing the optimization window into smaller segments and solve them independently.
Secondly, large 3D rotations could be problematic to guide with keypoint-based linear springs,
additional keypoints or di�erent assist mechanism might be needed in such scenarios.

5 EVALUATION & DISCUSSION
We perform a number of evaluations and ablations in order to validate and understand the key
elements of our approach.

5.1 Importance of a Compact Assist Parameterization
To assess the importance of our novel control parameterization scheme, we present quantitative
and qualitative analyses of results comparing our approach with other baselines. We design three
approaches in total:
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• Time-indexed V with spring-damper system (TV): use piecewise constant V as described in
Section 3.

• Global V with spring-damper system (GV): use the same spring-damper assistive forces based on
linearly interpolated reference motion. However, instead of modulating the in�uence of external
forces, apply a constant V value throughout the motion.

• Time-indexed root-force-and-torque (RFT): use external force and torque on character’s root,
independent of reference motion.

In what follows, we show that our TV approach is su�ciently expressive for scenarios that require
both physically feasible and infeasible motions, which GV does not handle well. We also show that
the structure and compactness of our TV approach compares favorably to the less-compact RFT
parameterization .

Time-Indexed V vs. Global V . To showcase the bene�ts of our TV approach, we show that our
scheme can handle physically feasible and infeasible motions appearing in the same task. Intuitively,
choosing a constant reliance on the assistive forces can lead to excessive use of assist in easy motions
or insu�cient use of assist in di�cult motions. Since we aim to create a system that is agnostic to the
physical feasibility of input motion sketch, the control parameters must be su�ciently expressive
to handle these scenarios.
The test case depicted in Figure 7a captures an example use case where the artist speci�es an

impossible high-jump motion and an easy forward-hopping motion appearing together. We use our
system to produce optimized motions with tuned hyper-parameters such as assist regularization
weight _V and the range of time-to-arrival values. Once tuned, these hyper-parameters are �xed
across the two parameterization schemes. For each approach, we obtain 100 independent converged
solutions using the compute budget of 15,000 samples, and then we examine the resulting keyframe
errors as well as the magnitude of V , which corresponds to the degree of external assist.
Figure 6a highlights how the performance of our system di�ers based on whether TV or GV is

used. Figure 7 compares the optimized motions side-by-side. We observe that the TV approach
yields solutions that succeed in achieving lower keyframe errors while keeping the use of external
assist moderate. On the other hand, learning a global V yields either high keyframe errors due to
insu�cient use of assist during the di�cult motion or excessive use of assist to drive the keyframe
errors low. However, we note that the reduction in parameter dimensionality for the GV approach
tends to yield high-quality actions, which generally coordinate well with the external assistive
forces. As seen in Figure 7c, the character produces a plausible jumping motion for the initial high
jump, although it fails to produce good actions for the later hopping motion, due to the excessive
use of external assist. On the other hand, Figure 7b shows the character relying mostly on external
assist for the high jump, refraining from producing internal torques, which is expected since actions
are regularized. The character produces a plausible hopping motion afterwards, being able to
suppress the use of external assist when not necessary.

Time-Indexed V vs. Time-Indexed Root-Force-and-Torque. Another alternative to using the TV scheme
is to directly treat external forces as parameters to be optimized. We can introduce time-indexed
forces 5ext,C and torques gext,C to be applied at the character’s root link, following the same piecewise
constant time discretization as V shown in Figure 2a. However, this approach greatly increases the
parameter dimensionality. For the 2D case, time-indexed forces 5ext,C 2 R2 and torques gext,C 2 R
requires three parameters, as opposed to one parameter associated with each time-indexed VC 2
[0, 1], and an additional hyperparameters to regularize the external force and torque in the objective.
Given the same compute budget of 15,000 samples, the time-indexed root-force-and-torque

approach struggles to perform on tasks requiring a signi�cant amount of external assist. We use
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(a) Keyframes (b) TV approach (d=44) (c) RFT approach (d=64)

Fig. 8. Comparison of the character performing the “high box jump” task using di�erent external assist
parameters. This scenario requires a significant amount of external assist to produce the desired motion.

a high box jump task in Figure 8a to demonstrate this. Again, we use our system to produce
optimized motions after tuning the hyper-parameters. This time, we tune the regularization weight
_V separately to take into account the scale di�erences in the two parameterization schemes.

In Figure 8, we provide a comparison of one of the optimized motions. The parameter dimension-
ality di�ers by 20, making the search space for optimal control much larger for the RFT approach.
Figure 8c shows an example case of a bad local minimum encountered when using the RFT approach,
which happens frequently among converged solutions. On the other hand, Figure 8b shows an
example of a good local minimum encountered when using the TV approach, yielding an emergent
solution of using a somersault motion to synergize with the spring-damper forces.

5.2 Assistive Forces as Constraint Relaxation
It is clear that external assistive forces are required for the characters to perform impossible motions.
However, assistive forces may also help with optimization even when the keyframes are physically
feasible, due to forces in e�ect acting as a temporary constraint-relaxation method that may speed
the optimization. In our experiments, we consistently �nd that using assistive forces leads to higher
quality results than the alternative, given equal amount of compute budget. Figure 9 compares
two trajectories of the same back �ip motion optimized with and without assistive forces. In the
case where high assist penalty (_V = 103) is used, the result is a full back �ip rotation with a stable
landing, even when assistive forces are disabled at run-time. In contrast, the optimization without
assistive forces is incapable of performing a stable landing.
Since every optimization parameter has an initial mean value of zero, our system starts the

optimization iterations assuming that the assistive force coe�cients are close to zero, i.e. # ⇡ 0.
However, as shown in Figure 6b, the optimizer tends to explore higher values of assistive force
coe�cients in the beginning and leverage assistive forces for �nding viable solution modes. After
some iterations, the reliance on assistive force is gradually reduced and eventually converges to
a �xed value depending on the cost function penalty _V . This exploration behavior is analogous
to a learning curriculum, similar to [Yu et al. 2018], and may explain the discrepancy observed in
Figure 9.
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(a) Motion optimized with high assist
penalty and replayed without assist

(b) Motion optimized without assist

Fig. 9. Comparison of optimized trajectories with and without assist during training. Training with assist
yields a more stable trajectory, even with assistive forces disabled at run-time. Note that in (b), the trajectory
performs a partial rotation and unstable landing.

5.3 Reusing Solutions
While our system incorporates optimization into the animator’s work�ow, o�ine precomputation
can be used to yield real-time response to keyframe edits. For example, to make a character jump
onto a box, one may procedurally generate instances of the jumping scenario by varying keyframe
con�gurations and the box’s height. For each of these instances, solutions can be pre-computed.
Then, to display desired motions according to the animator’s input keyframes, we can return
precomputed solutions or an interpolation thereof. While time-indexed controls generally may
not generalize well, any use of the assistive forces in the computed solutions will naturally act to
provide stabilizing feedback around the target keyframe trajectory. To prototype this capability,
we prepare a simple scenario where the Luxo character jumps onto boxes of di�erent heights. We
obtain a solution for one particular instance (box height=2.0m) and observe that the solution readily
transfers to other instances (box height=[1.0m - 2.2m]) of box jump (see Figures 10).

For a more quantitative look, Figure 11 shows the deployment performance of solutions learned
on di�erent box heights by plotting �nal keyframe error as a function of tested box height. Instead
of cumulative keyframe error, we evaluate the keyframe error associated with the �nal keyframe
as a heuristic for whether the trajectory completes the motion as intended, while not taking
intermediate keyframes into account. Intuitively, deployment performance is best when the tested
box height and the original box height are equal. Solutions perform robustly when tested box
heights are reasonably close to their original box heights. With multiple precomputed solutions,
we can leverage the emerging best-error envelope (highlighted in magenta in Figure 11) to deploy
the best available solution given a box height within range, bypassing the optimization process.
This shows the promise of solution re-use, although testing these ideas on more complex motions
is left as future work.

5.4 Limitations
While we have made signi�cant progress, our work still has unsolved issues. The system requires
some experience in order to be able to quickly debug motions that do not behave as intended. The
ability of CMA-ES to �nd multiple solution modes can be seen as a feature (emergent behavior)
or as a a problem (unpredictable behavior). The optimized results can be sensitive to various
hyperparameters, such as the CMA-ES population size and the assistive force penalty. We have
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2.2m 2.0m 1.8m 1.6m 1.4m

1.2m 1.0m 3m 0m

Fig. 10. The converged solution for a particular 2.0m box jump instance is successfully deployed to boxes of
other heights without any additional optimization. Outlined scenarios are failure cases.

Fig. 11. Deployment performance for solutions learned on di�erent box heights. The best-error envelope is
highlighted in a magenta line.

yet to show that the method could scale to complex 3D human movements, although we note that
existing full-body trajectory optimization methods have many constraints of their own, i.e., having
long compute times, �xed contact timing, or do not extend to impossiblemotions. The current system
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is not yet fully interactive. We do not yet demonstrate long duration keyframe sequences, although
we expect that these could be e�ciently achieved using a windowed optimization. Underdamped
settings for the PD-based joint control can result in minor wobbles, visible in some of our motions.

6 CONCLUSIONS
We have presented a �exible motion design system for generating plausible simulated motions from
crude keyframe inputs. Our method provides a novel combination of internal actuation, external
assistive forces, and black-box simulation. We believe that the simplicity of the method will facilitate
its adoption.
We apply our method to four distinct characters on a wide variety of motions. In many cases,

our system produces natural motions and emergent behaviours from sparse keyframe inputs.
The method e�ectively subsumes physics-as-a-hard-constraint and rag-doll trajectory tracking as
special cases at opposite ends of the assistive spectrum. For the case of physically-feasible motions,
we show that the introduction of assistive forces can act as a constraint relaxation method that
enables faster optimization. The compact modulation-based assistive force parameterization is
su�ciently expressive to handle both physically feasible and infeasible motions occuring in the
same motion; the system is agnostic to the physical feasibility of the input keyframes.

Many avenues exist for future work. We envision partial keyframing to be a straightforward yet
rewarding extension. For example, one may �x the height and pose of a keyframe but otherwise
leave its location free to be optimized. More �exible motions will emerge, at the cost of a slight
increase in the dimensionality of the optimization. We also envision opportunities for data-driven
methods to improve performance, e.g. using a supervised model as a caching mechanism to allow for
re-use and warm-starts for optimization. Meanwhile, di�erentiable physics (e.g. [Heiden et al. 2019]),
GPU-accelerated simulators (e.g. [Monteiro et al. 2019]), and sampling and particle �lter-based
optimization (e.g. [Hämäläinen et al. 2014]) all show promise towards scaling optimization for more
complex character morphologies and movements. Other improvements include multi-resolution
optimization; understanding the bene�ts of higher-order interpolants, if any; and an improved user
interface. Finally, by considering state-indexed control methods as an orthogonal direction, we may
bridge the gap between trajectory optimization and closed-loop control for directable physics-based
character animation. Success in these tasks will help combine the strengths of keyframing-driven
techniques with the bene�ts of RL-based techniques (e.g. real-time inference and robustness to
perturbations).
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APPENDICES

A TABLE OF HYPERPARAMETERS
In Table 1 we provide a table of hyperparameters used for generating our results. Tuning these
hyperparameters is a straightforward process, where we change the values a little at a time and
observe the quality of generated motions. We �nd the number of action pieces, the range of
allowed time-to-arrival values, and the regularization weight for external assist modulation to play
signi�cant roles in generating visually pleasing results.

Table 1. The table of hyperparameters for the motions appearing in this paper and the supplementary video.

Motion # action pieces min. ∆C max. ∆C _V (10G )
Luxo reverse somersault 10 5 40 +2.00
Luxo clamber 10 10 60 +0.25
Luxo jump-hop 10 5 30 +2.00
Luxo high box jump 10 5 45 +3.00
Luxo wall �ip 10 10 30 +2.00
Luxo cli�-walk 30 15 40 +1.00
Luxo cli�-jump 13 10 30 +0.20
Desk cli�-walk 20 5 40 +0.85
Desk cli�-jump 13 5 30 +1.50
Desk wall jump 10 15 30 +0.65
Folk forward roll 10 15 30 +0.50
Folk backward roll 14 15 40 -1.00
Folk long jump 12 5 35 +1.00
Folk parkour 16 5 25 -0.50
Folk wall �ip 10 10 55 +1.75
Folk valut 13 5 30 +1.50
Folk handstand 15 10 45 +0.70
Boxy supine getup 10 30 65 -2.00
Boxy prone getup 10 40 60 -3.00
Boxy wall �ip 10 10 30 +1.00
Boxy backtumble 10 10 30 -2.00
Boxy turn-and-�ip 15 5 40 -1.00
Boxy high jump 13 5 20 +0.00
Boxy walk and sit 20 15 30 -2.00

B USER INTERFACE
Our user interface prototype is built to enable rapid prototyping of user-directed physics-based
character animation, borrowing from traditional keyframing-based animation work�ow. Instead
of kinematic interpolation, we o�er the capability to launch an optimization job based on the
parameters speci�ed by the control panel. Figure 12 shows the full view of our DearPyGui-based
control panel, which is used in conjunction with the display of the simulation environment.

Please refer to the supplementary video for demonstrations of the graphical user interface.
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Fig. 12. The full view of the control panel of our user interface. 1: keyframes are displayed as tabs that can be
added and removed. 2: keyframe configurations, such as root position, orientation, joint angles, and keyframe
weights can be manipulated with sliders and bu�on modules. 3: CMA configurations are exposed to the user,
including action lengths, time-to-arrival ranges, penalty weights, and computation budget parameters. 4: the
user can display optimized motions as well as reference motions induced by input keyframes.

C ANIMATED CHARACTERS
We prepare four rigid-body characters to demonstrate the robustness and capacity of the optimized
motions. Our method generalizes across 2D and 3D characters. In this section, we describe three
2D characters and one 3D character. Their representative �gures are shown in Figure 13.

Luxo2D. The classic 2D Luxo is a 6-DoF character equipped with neck, hip, and knee joints. The
primary locomotion mode for the Luxo character is hopping.

Desk2D. The desk character is a biped with a wide base of support capable of sideways crab-like
jumps and locomotion.
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Fig. 13. Representative figures of the animated characters. From le� to right: Luxo2D, Desk2D, Folk2D, and
Boxy.

Table 2. Evaluation of Horizon Curriculum. Each value shows the mean and standard deviation of five
independent optimization runs with di�erent random seeds. The Time columns are the overall optimization
wall-clock time in seconds. The Cost columns show the scaled (⇥10�2) objective function values when
optimization is completed.

Curriculum No Curriculum

Time (s) Cost Time (s) Cost
Luxo Back Flip 17.9 ± 4.1 0.9 ± 0.2 27.6 ± 4.1 0.8 ± 0.4
Desk Wall Jump 112.8 ± 8.9 7.5 ± 0.4 54.2 ± 4.6 5.3 ± 0.4
Folk Wall Flip 78.3 ± 3.1 8.9 ± 2.5 101.1 ± 16.5 3.6 ± 0.3
Boxy Jump 50.8 ± 7.2 3.0 ± 1.1 74.0 ± 22.9 2.7 ± 0.5

Folk2D. The 2D humanoid character is equipped with the typical number of joints as 3D humanoid
settings, with all rotations constrained to the sagittal plane, hence only using y-axis rotation.

Boxy: A 3D Biped. Boxy is a simpli�ed 3D humanoid biped character with a cubic torso.We constrain
the motion of all limb joints to the sagittal plane, while allowing for abdominal rotation into both
the sagittal and the horizontal planes.

D IMPLEMENTATION
We use PyBullet [Coumans and Bai 2020] to simulate the physical interactions between the char-
acters and the environment. The �exible programming interface of PyBullet allows character
keyframes to be dynamically added and removed at run-time. We use a publicly available imple-
mentation of CMA-ES [Hansen 2016; Hansen et al. 2020] for optimization.

E EVALUATION OF HORIZON CURRICULUM
We evaluate the e�ect of horizon curriculum on the optimization time and objective function cost at
convergence. For experiments with horizon curriculum disabled, we set the initial curriculum stage
to span all keyframes. Table 2 summarizes the result. A caveat is that a lower objective function
value is not always indicative of better motion. For example, we �nd the quality of wall �ip motions
for values 8.9 ⇥ 10�2 and 3.6 ⇥ 10�2 to be visually similar.
The horizon curriculum serves to reduce the perceived latency of the optimization process by

immediately having short-horizon results to display. However, this can sometimes come at the
cost of slowing the overall optimization. In some cases, such as Desk2D wall jump, we �nd that
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Table 3. E�ects of CMA-ES population size on final objective function values. Time and cost are reported the
same way as Table 2.

Population Size P=8 P=16 P=32 P=48

Luxo Back Flip
Time (s) 9.4 ± 0.8 8.0 ± 0.6 11.9 ± 0.9 17.9 ± 4.1

Cost 5.9 ± 1.7 3.1 ± 1.6 2.1 ± 1.0 0.9 ± 0.2

Folk Wall Flip
Time (s) 58.8 ± 2.9 54.1 ± 4.7 63.0 ± 2.8 78.3 ± 3.1

Cost 18.3 ± 5.0 13.3 ± 3.5 9.9 ± 2.4 8.9 ± 2.5

horizon curriculum can degrade the convergence speed when the optimized motions are complex.
This behavior is expected since the growing horizon approach of the curriculum means that
earlier optimization stages cannot consider the impact of later keyframes. Consequently the earlier
solutions may fall in local minima, and thus need to be re-optimized as new keyframes become
available. For simpler motions, the total optimization times are comparable between training with
and without horizon curriculum. In the case of Luxo2D back �ip and Boxy jump, the optimization
time with horizon curriculum is on average faster than training without curriculum.

F SENSITIVITY TO POPULATION SIZE
The optimized motions can exhibit some sensitivity to the population size of CMA-ES. In general,
evolution strategies tend to �nd better solutions when using larger populations. A larger population
size alleviates the problem of local minima by maintaining a more diverse set of individuals
throughout the optimization process. We observe this phenomenon in motion sketch optimization,
as shown in Table 3. Since the experiments were performed on a 24-core machine, we expect
the optimization time to be at a minimum when population size is equal to 24. We also note that
better solutions are achieved at convergence with a larger population size. In the back �ip and
wall �ip examples, the di�erence in motion quality between % = 8 and % = 48 is noticeable. Using
lower population size is more likely to produce motions with incomplete rotations, which inhibit
the characters from performing a stable landing. Thus, when considering the trade-o� between
optimization time and motion quality, we set the population size to 48 for all our experiments.

G TRADE-OFF: TRACKING AND ASSIST USE
As with most optimization problems involving regularization, there is a trade-o� between keyframe
tracking performance and the amount of external assist used, induced by the choice of regularization
strength _V as appears in Equation 4. Intuitively, larger values of _V discourage the use of external
assistive forces and thus encourages more physically-based solutions to emerge, which may have
worse keyframe tracking performance when the speci�ed motion is di�cult. Smaller values of _V ,
on the other hand, may result in solutions that rely completely on external assist, which makes the
result visually unappealing due to ragdoll-like behaviors.
This trade-o� is visualized in Figure 14, where varying levels of _V result in solutions lying on

di�erent parts of the plot, implicitly forming a trade-o� frontier. For this experiment, for each
value of _V , we budget 15,000 samples per run and obtain 5 independent runs of CMA-ES using
our time-indexed V approach. We use a simple box jump motion (see Figure 15) that is di�cult but
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Fig. 14. Comparison of performance across 7 di�erent values of regularization strength _V . Each point
represents a solution. Ideal solutions (small assist, small error) reside on the bo�om-le� corner.

Fig. 15. The “low box jump" scenario that is di�icult but possible to produce the desired motion without
external assist.

possible to perform without external assist. Figure 16 shows that a high _V results in physically-
based motions incurring high keyframe error while a low _V results in passive and ragdoll-like
motions incurring low keyframe errors.
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Fig. 16. A side-by-side comparison of the character performing the “low box jump” task (keyframes shown in
Figure 15) according to di�erent regularization strengths. Le�: optimized with _V = 143. Right: optimized
with _V = 14 � 3. Note the emergent backflip which helps the character stay on a physically-based trajectory
but completely ignores an intermediate keyframe.

H TRACKING ASSIST OVER TIME
We also track the usage of assistive forces within a single roll-out episode for a long jump motion,
shown in Figure 17. The time period with the highest assistive forces corresponds to the motion
segment that demands the most unphysical accelerations. This observation is also aligned with our
intuition.
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(a) Input keyframes for an impossible long jump

(b) Progression of optimized VC values over time and snapshots of optimized motion corresponding to each
value.

Fig. 17. This example shows the amount of assistive forces used to perform an impossible long jump by Folk.
In the final optimized motion, only a significant amount of assist is used right before the flight phase.
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