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Abstract— Differential dynamic programming (DDP) is a
widely used trajectory optimization technique that addresses
nonlinear optimal control problems, and can readily handle
nonlinear cost functions. However, it does not handle either state
or control constraints. This paper presents a novel formulation
of DDP that is able to accommodate arbitrary nonlinear in-
equality constraints on both state and control. The main insight
in standard DDP is that a quadratic approximation of the
value function can be derived using a recursive backward pass,
however the recursive formulae are only valid for unconstrained
problems. The main technical contribution of the presented
method is a derivation of the recursive quadratic approximation
formula in the presence of nonlinear constraints, after a set of
active constraints has been identified at each point in time. This
formula is used in a new Constrained-DDP (CDDP) algorithm
that iteratively determines these active set and is guaranteed
to converge toward a local minimum. CDDP is demonstrated
on several underactuated optimal control problems up to 12D
with obstacle avoidance and control constraints and is shown
to outperform other methods for accommodating constraints.

I. INTRODUCTION

Nonlinear optimal control problems have seen numerous
applications in science and engineering, and a variety of
trajectory optimization techniques have been developed to
solve them, including direct collocation methods [1], shoot-
ing methods, differential dynamic programming (DDP) [2],
and the iterative linear quadratic regulator (iLQR) which is
highly related to DDP [3]. Differential dynamic program-
ming (DDP) is an iterative method that decomposes a large
problem across a control sequence into a recursive series of
small problems, each over an individual control at a single
time instant, solved backwards in time. Its key insight is
that the value function can be approximated by a quadratic
fit around the current trajectory, and that this fit can be
calculated recursively in analytical form. By iteratively mov-
ing toward the minima of the quadratic approximations, the
trajectory is progressively improved toward a local optimum
with superlinear convergence. The key advantage of DDP
(and the closely related iLQG) approach over collocation
methods is that the size of each smaller problem is time-
independent, since no intermediate matrices are larger than
n × n where n is the state-space dimension. However,
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Fig. 1: CDDP computes a trajectory for a quadcopter flying
toward the goal state while avoiding two moving spheres
in the 3D space. In this camera view, the blue sphere moves
from top to bottom while the green sphere moves away from
the camera.

collocation methods have the advantage that they can handle
state and control constraints using nonlinear program solvers
like sequential quadratic programming.

In this paper we present an extension to DDP that handles
nonlinear constraints on both state and control. Prior research
has indeed considered incorporating constraints in DDP, but
those approaches have either been limited to linear systems,
or linear constraints only on control, or fail to properly han-
dle infeasible QP sub-problems. Another method sometimes
used is to apply some barrier function that penalizes proxim-
ity to constraints, converting the constrained problem into an
unconstrained one. However, our experiments find that this
approach is more susceptible to local minima. To our knowl-
edge, no DDP variant that handles nonlinear constraints has
been successfully applied to higher-dimensional problems
like those exhibited in underactuated robotics and vehicle
control. Our method is demonstrated on simulated dynamic
vehicle obstacle avoidance problems, including a quadcopter
with control constraints avoiding multiple moving obstacles
(Fig. 1).

II. RELATED WORK

Differential Dynamic Programming is a well established
method for nonlinear trajectory optimization [2] that uses an
analytical derivation of the optimal control at each point in
time according to a second order fit to the value function.
These problems are recursive in nature and solved backward
in time, starting from a given time horizon. The iterative



linear quadratic regulator (iLQR) is a similar backwards
recursion approach.

State- and control-limited optimal control problems have
been solved in the linear quadratic case using multi-
parametric programming to derive optimal gain coefficients
for every initial point in state space [4], but the complex-
ity of the piecewise-linear policy can grow sharply with
dimension. Nonlinear constrained problems can be solved
using collocation methods, which formulate a large nonlinear
program across the entire trajectory and optimize using nu-
merical methods like sequential quadratic programming [1].
However, these methods are expensive due to their need
to formulate a large optimization problem over all control
variables across the trajectory.

Several authors have incorporated constraints into DDP
methods. Most similar to our work, Murray and Yakovitz
(1979) [5] and Yakovitz (1986) [6] derive a constrained non-
linear DDP method for linearly constrained controls using
a stagewise Karush-Kuhn-Tucker condition. However, these
methods are only applicable to problems with linear control,
and lack the ability to handle infeasible QPs in the forward
pass. Shi et al [7] maintain iterates an admissible region,
but work only with linear systems and constraints. Tassa et
al develop a control-limited DDP method and apply it to
high-dimensional humanoid characters [8], but only support
box-bounded control constraints. Our method, by contrast,
supports arbitrary nonlinear state and cost constraints.

Constraint penalties have also been used to address trajec-
tory optimization with constraints. Manchester and Kuinder-
sma (2016) mention the use of exponential barrier functions
to account for constraints [9]. Chang et al [10] use a
relaxation technique to handle constraints, in which con-
straint violations are penalized to produce an unconstrained
objective function. Unlike our method, the iterates and final
result are not guaranteed to be feasible.

III. PRELIMINARIES

For completeness, we first formally define the optimal
control problem and provide a short review on DDP to define
mathematical notation used throughout this paper. Please
refer to [2] for more detailed description of DDP.

A. Optimal Control Problem

Consider the discrete-time dynamical system,

xk+1 = f(xk,uk), (1)

where xk ∈ Rn is the state of the system at time step k,
uk ∈ Rm is the control input at time step k, and f is the
dynamic function that governs the state transition given the
current state and control.

The cost of a sequence of states, X = {x0, · · · ,xN}, and
a sequence of control, U = {u0, · · · ,uN−1}, is defined by
the objective function,

J(X,U) =

N−1∑
k=0

l(xk,uk) + lf (xN ), (2)

where l(x,u) : Rn × Rm → R is the running cost and
lf : Rn → R is the final cost.

Given the initial state x0 and a time horizon N , our goal
is to find a sequence of control U that minimizes J subject
to dynamic constraints (1). This optimization problem can
be solved by dynamic programming because the optimality
of future control from a particular state does not depend on
the past control or state sequences. Therefore, we define an
optimal value function at time step k as the optimal cost-to-
go starting at a given state x:

Vk(x) = min
U

N−1∑
j=k

l(xj ,uj) + lf (xN ).

By the recursive nature of Bellman Optimality Principle,
the optimal value function can be rewritten as

Vk(x) = min
u
l(x,u) + Vk+1(f(x,u)), (3)

where the boundary condition is

VN (x) = lf (x).

B. Differential Dynamic Programming
DDP is an iterative method to numerically solve a non-

linear optimal control problem as described above. At each
iteration, DDP performs a backward pass and a forward pass
on the current estimate of state-control trajectory (X, U),
i.e. nominal trajectory. In the backward pass, the algorithm
approximates the value function as a quadratic function
alone the nominal trajectory. In the forward pass, a forward
integration is performed to produce a new nominal trajectory
based on the value function computed in the backward pass.
This process is repeated until a desired level of convergence.

a) Backward pass.: We first define an action-value
function, Q : Rn×Rm → R, which evaluates the cost-to-go
of taking a given action in a given state following the optimal
policy thereafter. More conveniently, we define Q in terms
of deviation from the nominal state and action (xk,uk):

Qk(δx, δu) = l(xk + δx,uk + δu)

+ Vk+1(f(xk + δx,uk + δu)). (4)

To approximate the value function as a quadratic function,
we Taylor-expand Qk about (0,0) and truncate the terms
beyond second-order:

Qk(δx, δu) = Qk(0,0) +QTx,kδx +QTu,kδu

+
1

2
(δTxQxx,kδx + δ

T
uQuu,kδu)

+ δTuQux,kδx, (5)

where

Qk(0,0) = l(xk,uk) + Vk+1(xk+1),

Qx,k = lx,k + fTx bk+1,

Qu,k = lu,k + fTu bk+1,

Qxx,k = lxx,k + fTx Ak+1fx + bTk+1fxx,

Quu,k = luu,k + fTu Ak+1fu + bTk+1fuu,

Qux,k = lux,k + fTu Ak+1fx + bTk+1fux.



Note that other than the time index, k, the subscript
indicates the variable with respect to which the derivative is
taken. To simplify the notations, we define Ak+1 and bk+1

to be the Hessian and the gradient of Vk+1(x) evaluated at
xk+1.

We can then express the value function by optimizing the
quadratic approximation of Q over δu:

Vk(x) = min
δu

Qk(δx, δu). (6)

The solution to this optimization is a linear feedback
relation between δu and δx:

δu = Kkδx + jk, (7)

where, Kk = −Q−1
uu,kQux,k and jk = −Q−1

uu,kQu,k.
Finally, we plug the optimal control (7) into the approxi-

mated Q function (5) to recover the value function:

Vk(x) =
1

2
(x− xk)

TAk(x− xk) + bTk (x− xk) + ck,

where

Ak = Qxx +KT
k QuuKk +QTuxKk +KT

k Qux,

bk = Qx +KT
k Quujk +QTuxjk +KT

k Qu,
(8)

and ck is the constant term irrelevant to the algorithm. The
Hessian (Ak) and the gradient (bk) of the value function
evaluated at xk are then passed to the previous time step
k − 1 as the backward pass continues.

Starting with AN = lfxx and bN = lfx , we can recursively
solve all the Kk, jk, Ak, and bk from time step N to 0.

b) Forward pass.: During the forward pass, we update
the nominal state-control trajectory using the optimal linear
feedback (7) from the previous backward pass, starting with
xnew0 = x0:

unewk = uk +Kk(x
new
k − xk) + jk (9)

xnewk+1 = f(xnewk ,unewk ). (10)

IV. CONSTRAINED DDP

Our CDDP method extends standard DDP to enforce
general inequality constraints, which are expressed as dif-
ferentiable vector functions of state or/and control variables:

gk(x,u) ≤ 0. (11)

The constraint gk are enforced on the state and control on
k’th time step. Although we consider inequalities here the
method could also easily be applied to equality constraints.

When a constraint is active, the quadratic approximation
of the value function used in standard DDP is no longer
accurate, because when the control at step k− 1 is changed
infinitesimally, the optimal state and/or control at time k still
remain at the boundary of the feasible set. To properly handle
this situation, the DDP backwards recursion should be modi-
fied with the knowledge that active constraints remain active
under local perturbation. Using techniques from sensitivity
analysis, this section derives the quadratic approximation of
the value function in the presence of active constraints.

CDDP begins with a suboptimal feasible trajectory, and
iteratively reduces the cost of the trajectory while keeping it
feasible in the face of various approximations of the problem.
The algorithm’s backward pass calculates the constrained
value function approximation to determine a step direction,
and on the forward pass ensures the feasibility of the new
nominal trajectory and decreasing cost using a trust region
method. The algorithm must also discover when constraints
should be added and removed from the active set.

A. Backward Pass

Algorithm 1 describes the procedures for our backward
pass. Similar to the standard DDP, the backward pass
quadratically approximates the value function about the
nominal trajectory through a recursive process from time
step N to time step 0. However, instead of the unconstrained
optimization in (6), we should express the value function in
terms of a constrained optimization:

min
δu

1

2
δTuQuu,kδu + δ

T
uQux,kδx +QTu,kδu

subject to gk(xk + δx,uk + δu) ≤ 0. (12)

Unfortunately, the relationship between δx and the optimal
δu can no longer be derived by a simple matrix inversion
as in (7). Here we derive a local analytical, quadratic
expression of the optimal solution to (12) as a function of
δx using sensitivity analysis. Near the nominal trajectory, the
analytical approximation yields a good approximation of the
value function under the assumption that the currently active
constraints do not change.

To this end, we first create an active set that includes
all the equality constraints and the inequality constraints
whose boundary the current nominal trajectory lies on. Due
to numerical issues, we select constraints that meet equality
with 0 up to some tolerance gk(xk,uk) ≥ −ε (line 8). Let
ĝk denote the subset of active constraints. The linearization
of the active set constraints indicates that the constraint:

Ckδu = Dkδx (13)

must be met, where Ck = ĝu,k(xk,uk) and Dk =
−ĝx,k(xk,uk) (line 9-10) are the derivatives of the active
constraints in the u and x dimensions, respectively.

In a local neighborhood around the nominal trajectory,
the solutions to the constrained optimization are linearly
approximated by the equality-constrained optimization:

min
δu

1

2
δTuQuu,kδu + δ

T
uQux,kδx +QTu,kδu

subject to Ckδu = Dkδx, (14)

where the solution can be expressed analytically through
KKT conditions,[

Quu,k CTk
Ck 0

] [
δu
λ

]
= −

[
Qux,k
Dk

]
δx −

[
Qu,k
0

]
.

(15)
The equation can be used as-is using the Schur complete-

ment to determine δu as a function of δx. However, we
have found that this often fails to release constraints from the



Algorithm 1 CDDP Backward Pass

1: AN ← lfxx, bN ← lfx
2: for k = N − 1, N − 2, . . . , 0 do
3: Qx ← lx,k + fTx bk+1

4: Qu ← lu,k + fTu bk+1

5: Qxx ← lxx,k + fTx (Ak+1 + µ1In)fx + bTk+1fxx
6: Quu ← luu,k + fTu (Ak+1 + µ1In)fu + bTk+1fuu +
µ2Im

7: Qux ← lux,k + fTu (Ak+1 + µ1In)fx + bTk+1fux
8: ĝk ← all entries of gk such that gk(xk,uk) ≤ ε
9: Ck ← ĝu,k(xk,uk)

10: Dk ← −ĝx,k(xk,uk)
11: Solve 1

2δ
T
uQuuδu + δ

T
uQu, subject to Ckδu = 0

12: Compute Lagrange multipliers λ
13: Ĉk, D̂k ← rows from Ck, Dk corresponding to

positive entries of λ
14: W ← (ĈkQ

−1
uu Ĉ

T
k )

−1ĈkQ
−1
uu

15: H ← Q−1
uu (I − ĈTkW )

16: Kk ← −HQux + (W )T D̂k

17: jk ← −HQu
18: Ak ← Qxx +KT

k QuuKk +QTuxKk +KT
k Qux

19: bk ← Qx +KT
k Quujk +QTuxjk +KT

k Qu
20: Store Quu, Qux, Qu as Quu,k, Qux,k, Qu,k
21: end for

active set. Instead, we examine the dual solution (Lagrangian
multipliers), λ, to indicate which constraints remain active.
We solve the equation once to determine the dual solution
about the nominal trajectory, i.e., when δx = 0. Removing
the constraints associated with the negative elements of λ,
we obtain a new active set: Ĉkδu = D̂kδx (line 11-13).

Now we can express the primal solution subject to the
modified active set of constraints:

δu = Kkδx + jk. (16)

Kk and jk are the feedback gain and the open-loop term
defined as (line 14-17)

Kk = −HQux,k + (W )T D̂k, (17)
jk = −HQu,k, (18)

where

W = (ĈkQ
−1
uu,kĈ

T
k )

−1ĈkQ
−1
uu,k,

H = Q−1
uu,k(I − Ĉ

T
kW ).

After computing Kk and jk, we can update the Hessian
and the gradient of the approximated value function using (8)
(line 18-19).

B. Forward Pass

Algorithm 2 lists pseudocode for the forward pass. During
the forward pass, we ensure that the updated nominal trajec-
tory remains feasible and continues to reduce the objective
function. Although the approximated value function from
the backward pass takes into account the estimated active
constraints, it cannot guarantee that directly using the linear

Algorithm 2 CDDP Forward Pass

1: feasible← False
2: Jint = J(X,U)
3: e← BIG . set to initial large trust bound
4: while feasible = False do
5: feasible← True
6: x← x0

7: Xtemp ← X, Utemp ← U
8: for k = 0, 1, . . . , N − 1 do
9: δx ← x− xk

10: xtemp,k ← x
11: Solve QP: δ∗u = argmin 1

2δ
T
uQuu,kδu +

δTuQux,kδx + δTuQu,k, subject to |δu| ≤ e and
gk(x,uk) + gu,kδu ≤ 0

12: if QP is infeasible then
13: feasible← False
14: e← αe
15: break
16: end if
17: utemp,k ← uk + δ

∗
u

18: x← f(x,utemp,k)
19: end for
20: xtemp,N ← x
21: Jtemp ← J(Xtemp,Utemp)
22: end while
23: if Jtemp < Jint then
24: X← Xtemp, U← Utemp

25: µ1 ← β1µ1, µ2 ← β2µ2 . 0 < β1, β2 < 1
26: else
27: µ1 ← α1µ1, µ2 ← α2µ2 . α1, α2 > 1
28: end if

feedback to update the nominal trajectory will result in a
feasible trajectory. Consequently, we fully solve a QP (line
12-16) that takes into account all the constraints to guarantee
the updated nominal trajectory is feasible:

min
δu

1

2
δTuQuu,kδu + δ

T
uQux,kδx +QTu,kδu

subject to gk(xk,uk) + gx,k(xk,uk)δx

+gu,k(xk,uk)δu ≤ 0. (19)

Note that δx term in the linearzied constraint vanishes
because the constraint is linearize about the newly updated
nominal state:

uk−1 = uk−1 + δ
∗
u (20)

xk = f(xk−1,uk−1) (21)

where δ∗u is the optimal solution of the QP from the previous
time step.

C. Regularization

In practice, the convergence of the optimization problem
highly depends on the choice of step size, since step sizes
that are too large may lead to infeasibility or increases in the



objective. We adapt the regularization scheme proposed by
[11]:

Qxx,k = lxx,k + fTx (Ak+1 + µ1In)fx + bTk+1fxx (22)

Quu,k = luu,k + fTu (Ak+1 + µ1In)fu + bTk+1fuu + µ2Im
(23)

Qux,k = lux,k + fTu (Ak+1 + µ1In)fx + bTk+1fux, (24)

where the µ1 term keeps the new state trajectory close to the
old one while the µ2 term regularizes the control trajectory.

We adjust the value of µ1 and µ2 after each forward
pass. If the trajectory is improved, the values are reduced by
the factor of β1 and β2 respectively (Algorithm 2 line 25),
where 0 < β1, β2 < 1. Otherwise, we increase the weight of
regularization terms by the factor of α1 and α2 (Algorithm
2 line 27), where α1, α2 > 1.

In addition, we enforce a trust-region to limit the size of
δu such that the new nominal trajectory stays close to the
feasible region. We add a box constraint on δu during the
QP solve (19):

−e ≤ δu ≤ e, (25)

where e is an adaptive bound to limit the distance between
δu and the current nominal trajectory. Initially, e is a vector
of a large number, which is reduced when an attempt to
solve the QP results in infeasible solution (Algorithm 2 line
12-15):

e← αe (26)

where 0 < α < 1.

V. RESULT

We evaluated CDDP on three different dynamic systems: a
2D point mass, a 2D car, and a 3D quadcopter. Each dynamic
system was tested with a nonlinear geometric constraint
and a more complex scenario with multiple or/and moving
constraints. CDDP was compared against two alternative
methods. The first one replaces hard constraints with a log-
barrier penalty term in the objective function and the second
one uses sequential quadratic programming implemented
by SNOPT software. For all examples, the regularization
parameters are β1 = β2 = 0.95 and α1 = α2 = 1.05,
and the trust region reduction rate is α = 0.5. We run all
the tests on a laptop computer with a 2.7 GHz Intel Core i5
processor and 8GB of RAM.

For all three methods, the optimization terminates when
the same computation time budget is reached. We compare
the total costs of the trajectory at the termination time shown
in Table I. The computation time budget is set to 5 seconds
for all examples.

A. 2D Point Mass

We begin with a simple 2D point mass system. The state
includes the position and the velocity of the point mass,
x = {x, y, vx, vy}, while the control directly commands the

Fig. 2: Solutions to the point mass examples computed by
CDDP.

acceleration of the point mass, u = {ax, ay}. The dynamics
of the system can be expressed by following linear equations:

xk+1 = xk + hvxk ,

yk+1 = yk + hvyk ,

vxk+1 = vxk + haxk,

vyk+1 = vyk + hayk.

The optimal trajectory of the point mass minimizes the
control effort and the deviation from the goal state:

l(x,u) = huTRu,

lf (x) = (x− xgoal)TQf (x− xgoal), (27)

where R is an identity matrix giving the same weights to the
cost of ax and ay . Qf is a diagonal matrix with diagonal
elements being 50, 50, 10, and 10.

We set the initial and the goal state to be x0 =
[
0, 0, 0, 0

]
and xgoal =

[
3, 3, 0, 0

]
. The initial nominal trajectory starts

from x0 and ends at
[
0, 3, 0, 0

]
. We use a time step of h =

0.05 with time horizon N = 300.
In the first experiment, we place a circular constraint

centered at
[
1, 1
]

with radius 0.5:

(x− 1)
2
+ (y − 1)

2 ≥ 0.25.

Our method successfully generates a trajectory shown in
Fig. 2 Left. Adding another circular constraint (centered
at
[
1.5, 2.2

]
with radius 0.5) creates a more constrained

problem, results in a different trajectory (Fig. 2 Right).

B. 2D Car

Consider a 2D circle following the simplified vehicle
dynamics:

xk+1 = xk + hvk sin(θk),

yk+1 = yk + hvk cos(θk),

θk+1 = θk + huθvk,

vk+1 = vk + huv,

where the state, x = {x, y, θ, v}, includes the 2D position,
the orientation, and the forward velocity of the vehicle.
The control variable uθ changes the steering angle and uv

changes the forward velocity.
Similar to the point mass example, the optimal trajectory

of the 2D vehicle minimizes the control effort and the



Fig. 3: The optimal trajectory of a 2D car (red circles) driving
from (0, 0, 0, 0) to (3, 3, π2 , 0) while avoiding a circular
obstacle centered at (2, 2). The black arrow indicates the
heading direction of the car. For comparison, the white
circles show the optimal trajectory without the circular
constraint.

deviation from the goal state (27). The only difference is
that the diagonal elements of R are 0.2 and 0.1 while those
for Qf are 50, 50, 50, 10.

We set the initial state and the goal state to be x0 =[
0, 0, 0, 0

]
and xgoal =

[
3, 3, π2 , 0

]
. The initial nominal

trajectory starts from x0 and ends at
[
2, 4, π2 , 0

]
. We use

a time step of h = 0.05 with a time horizon N = 100.
In addition to the circular constraint (centered at

[
2, 2
]

with radius 1), we also set a constraint on the control
variable: uθ ∈

[
− π

2 ,
π
2

]
. Our method successfully produces

a trajectory shown in Fig. 3.
To make the problem more interesting, we let the circular

obstacle move over time. Consider a circle of radius 1 with
initial center at

[
−1, 1.2

]
moving horizontally to the right at

0.5 per time unit. The initial state x0 and the goal state xgoal

are the same as before, but we increase the time horizon to
N = 200. Our method produces a solution shown in Fig. 4.
To avoid the collision with the moving circle, the vehicle
waits for awhile at the beginning and starts to accelerate.
Fig. 5 visualizes a few frames of the vehicle motion.

C. 3D Quadcopter

We tested out algorithm on a 3D quadcopter, an under-
actuated nonlinear dynamic system with following equations
of motion [12]:

xk+1 = xk + hvk

vk+1 = vk + h(g +
1

m
(Rθf − kdvk))

θk+1 = θk + hJ−1
ω ωk

ωk+1 = ωk + hI−1
c τ

where x and v are 3-vectors representing the position and
the velocity of the quadcopter in the inertia frame. θ is the
3-vector consists of the roll, pitch and yaw angles define in

Fig. 4: The trajectory of position and orientation of the
2D car without constraints (green trajectories) and with the
moving circular constraint (blue trajectories).

the body frame. ω is the angular velocity in the body frame.
Rθ is a rotation matrix that transforms a vector from the
body frame to the inertia frame while Jω is the Jacobian
matrix that transforms the time derivative of θ to angular
velocity: ω = Jωθ̇. kd is the friction coefficient. Ic is the
inertia matrix.

The quadcopter is actuated by four motors generating
thrust force along the z-axis of the body frame. The angular
velocity of each motor, u1, u2, u3, u4, can be adjusted inde-
pendently. The total thrust force and torque on the quadcopter
in the body frame is given by

f =
[
0, 0, u21 + u22 + u23 + u24

]
τ =

[
u21 − u23, u22 − u24, u21 − u22 + u23 − u24

]
.

Therefore, we define the control variables as u =[
u21, u

2
2, u

2
3, u

2
4

]
and enforce lower bounds on the control

vector: u ≥ 0.
We use the same cost function as (27) with R being

the identity matrix and the diagonal elements of Qf being
50, 50, 50, 2, 2, 2, 1, 1, 1, 1, 1, 1.

We first test the algorithm on a scene where the quadcopter
has to fly around a sphere obstacle centered at the origin
with radius 2. The initial and the goal location of quadcopter
are x0 = [−3.5, 0, 0] and xgoal = [2.8, 0, 0] respectively.
Starting with a linear trajectory from x0 to [−0.5, 3, 0] with
time step h = 0.02 and time horizon N = 200. Fig. 6
illustrates a few samples along the final trajectory.

To demonstrate a more challenging scenario, we show that
the quadcopter is able to reach the goal state while avoiding
two moving spheres in the 3D space. The first sphere (radius
1) moves along the negative z-axis from [−1.5, 0, 2] at the
speed of 1 unit per second while the second one (radius 1)
moving along the y-axis from [1,−2.5, 0] at the speed of
1 unit per second. Starting with hovering controller at x0,
with xgoal = [1, 0, 0], Fig. 1 visualizes a few frames of the
quadcopter motion.



Fig. 5: Frames from optimal trajectory of a 2D car, shown as the red circle, driving from (0, 0, 0, 0) to (3, 3, π2 , 0) while
avoiding a moving obstacle, shown as the cyan circle. The white circle shows the optimal trajectory without the moving
constraint.

Fig. 6: The trajectory of a quadcopter avoiding a sphere.

D. Comparison with barrier methods and SQP

One common practice to handle inequality constraints
in an optimization is to reformulate the constraints as
log-barrier functions and include them in the objective
function[13]. We compare our method against the log-barrier
formulation of the optimization:

min
U

N−1∑
k=1

l(xk,uk) + lf (xN )−
M∑
i=0

t log(−gi(x,u)).

Note that as t approaches 0, −t log(−g) also approaches 0
if the constraint is satisfied (g < 0). Otherwise, −t log(−g)
approaches ∞. Starting with a large t, the method gradually
decreases t to improve the approximation of the original
constrained problem. In each iteration of t, an unconstrained
optimization is solved using Newton’s method. To use log-
barrier method for constraints in DDP, we add the additional
log-barrier cost term at each time step during the backward
pass and forward pass.

Another common practice to solve optimal control prob-
lem is to use sequential quadratic programming (SQP),
which makes a local quadratic approximation of the ob-
jective function and local linear approximations of the con-
straints and solves a quadratic program on each iteration[14].
SNOPT[15] is a SQP solver that is heavily used in the control
community[16].

We compare our method with log-barrier method and
SNOPT in all the examples with a 5 s time budget. We
also do experiments on the same examples with different

discretization of the time step. The summary of the results
is in Table I. CDDP and SNOPT outperform log-barrier
methods in all cases except in the 2D car with fixed circle and
N = 100. And even though SNOPT wins at examples with
shorter horizon (N = 100, 200), CDDP outperforms SNOPT
in longer horizon (N >= 300) except in the car with fixed
circle and N = 500 and quadcopter with moving spheres and
N = 400. Fig. 7 shows how the cost changes over time for
the quadcopter example with fixed sphere constraints, with
time horizon N = 400.

Fig. 7: Comparison between CDDP, log-barrier DDP and
SNOPT on the quadcopter with fixed sphere constraint
example, with time horizon N = 400.

VI. CONCLUSIONS

We presented an extension of DDP to problems with
nonlinear state and control constraints. Experiments demon-
strate that our method converges in fewer iterations, and can
solve more complex dynamic problems than a log-barrier
constraint penalty approach.

Our implementation is somewhat slower than DDP due
to the need to solve quadratic programs rather than matrix
inversion in inner steps, and this could be improved in future
work. Also, like all nonconvex optimization, we need a good
initial trajectory to ensure that the algorithm would not get
stuck in a bad local minima. In future work we plan to use a
sampling-based planning algorithm like RRT to find a good
initial trajectory [17], and our method could be incorporated



Examples CDDP log-barrier SNOPT
Point Mass one circle (h=0.05,N=300) 0.065 0.042 0.073
Point Mass two circles (h=0.05,N=300) 0.28 0.64 0.43
Car fixed circle (h=0.05,N=100) 0.33 0.28 0.28
Car moving circle (h=0.05,N=200) 0.10 0.32 0.08
Quadcopter fixed sphere (h=0.02,N=200) 62.07 478.00 81.79
Quadcopter moving spheres (h=0.02,N=200) 49.36 104.42 48.13
Point Mass one circle (h=0.03,N=500) 0.071 18.30 0.32
Point Mass two circles (h=0.03,N=500) 0.27 1.41 0.42
Car fixed circle (h=0.01,N=500) 0.49 9.86 0.30
Car moving circle (h=0.02,N=500) 0.21 4.80 86.00
Quadcopter fixed sphere (h=0.01,N=400) 53.69 635.53 98.28
Quadcopter moving spheres (h=0.01,N=400) 52.45 182.01 49.12

TABLE I: Comparison of different methods with a 5 s time budget.

into a kinodynamic planner to help it converge more quickly
to a global optimum [18].
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