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Fig. 1. We develop loco-manipulation skills for box-carrying physics-based characters. This is achieved via a
high-level A* planner, a mid-level diffusion-based motion, and a low-level RL control policy.

Humans perform everyday tasks using a combination of locomotion and manipulation skills. Building a
system that can handle both skills is essential to creating virtual humans. We present a physically-simulated
human capable of solving box rearrangement tasks, which requires a combination of both skills. We propose a
hierarchical control architecture, where each level solves the task at a different level of abstraction, and the
result is a physics-based simulated virtual human capable of rearranging boxes in a cluttered environment.
The control architecture integrates a planner, diffusion models, and physics-based motion imitation of sparse
motion clips using deep reinforcement learning. Boxes can vary in size, weight, shape, and placement height.
Code and trained control policies are provided.
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1 INTRODUCTION
Organizing our living space is a routine and familiar part of the human experience – from a
young age, we are taught to “put things back in their place”. However, these types of effortless
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tasks, e.g., object (re)arrangement in a cluttered environment, remain challenging to synthesize in
computer animation, as the character must be capable of navigating around obstacles, locomotion,
and manipulation in arbitrary, diverse settings. We present a physically-simulated human model
capable of autonomously performing this type of task, demonstrating the ability to lift, carry,
and place boxes in environments with obstacles. As with other recent efforts, e.g., [Starke et al.
2019; Merel et al. 2020; Zhang et al. 2022], our goal is to advance the ability of characters to use
locomotion and manipulation to interact with their environments in meaningful ways.

We adopt a hierarchical approach to solving these rearrangement tasks. This decouples the high-
level spatial planning from low-level motor-skill execution and therefore allows for generalization
of the locomotion and manipulation skills to a wide range of arrangement tasks. At the highest level,
we use a simple planner to establish a basic path between the pick-up and place-down locations.

The middle level is responsible for generating realistic kinematic locomotion trajectories. While
there exist many techniques for locomotion synthesis, we employ a diffusion model for its simplicity
and flexibility and the ready availability of walking motions in human motion datasets. We inves-
tigate its potential for synthesizing realistic human locomotion from high-level path constraints.
We introduce a bidirectional root representation to improve the diffusion model’s ability to satisfy
waypoint conditions more precisely. However, motion data for box pickup and placement is in
shorter supply, and so here we use a single motion clip as a kinematic reference.
Lastly, low-level policies provide fully physically simulated motor control skills capable of

imitating the kinematic reference motions. This is accomplished using an imitation-based deep-
reinforcement learning policy that is further made object-aware. This allows for robust carrying
behaviors which can accommodate a variety of box weights, sizes, and pick-up or place-down
heights.

We evaluate our method and its ability to generalize by demonstrating its capabilities in various
scenarios. We demonstrate the robustness of locomotion and manipulation components separately
and conduct ablation studies.
Our primary contributions are as follows: (a) a hierarchical planning-and-control system that

endows characters with box locomanipulation skills; (b) the introduction of diffusion models with
bidirectional root control as a suitable planning method for physics-based control; and (c) the ability
to generalize a single box lift-and-place motion to physics-based lift-and-place skills that span a
range of box weights and heights.

2 RELATEDWORK
Realistic animated motion can be generated using kinematic methods or using physics-based
simulations. The problem is difficult enough that it is common to focus on making progress on
specific subtasks, such as locomotion [Peng et al. 2017; Yin et al. 2007; Won et al. 2022; Holden et al.
2017] and manipulation [Liu 2009; Yang et al. 2022; Jiang et al. 2021; Zhang et al. 2021]. However,
humans can fluently sequence and combine locomotion and manipulation with an ease that is
challenging to reproduce.

2.1 Loco-manipulation for Humanoids
Several methods have been proposed to combine locomotion and manipulation using kinematics-
based approaches, e.g., [Bai et al. 2012; Agrawal and van de Panne 2016; Starke et al. 2019; Taheri
et al. 2022]. Kinematic-based approaches can generate high-quality character motion but can still
lack detail and weight that comes from the physical nature of the interaction between objects and
between the character and the object.
Physics-based simulation of loco-manipulation behavior provides a principled way to address

these issues, but comes with its own challenges. The interaction with the objects is often simplified,
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Fig. 2. System overview. We design four motion primitives for locomotion and manipulation which can be
combined to accomplish arrangement tasks in a 3D scene according to a simple motion primitive graph.
Each primitive consists of a policy that controls the character in a physically simulated environment. The
locomotion primitives, “Walk-only” and “Walk-and-carry”, leverage a diffusion model to generate kinematic
reference trajectories that guide the policies. Components with the same color are identical.

e.g.,[Mordatch et al. 2012; Coros et al. 2010] or requires significant compute resources and may still
be limited in terms of motion quality, e.g., [Merel et al. 2020]. Learned behaviors for approaching
a chair and sitting are demonstrated in [Chao et al. 2021]. This is accomplished via a set of walk,
turn, and sit controllers, that imitate motion clips together with an additional navigation-target
task reward. A higher-level controller is then trained which both selects a given lower-level
controller and its target-action. By comparison, we demonstrate the ability to avoid obstacles,
physically track diverse motions from diffusion-model trajectories, and perform richer interaction
with objects, e.g., moving them. Another recent approach demonstrates how to use a physics-based
RL controller as a projection-step during the diffusion to obtain more physically-plausible results
from diffusion models [Yuan et al. 2022], driven by language-based input. We show that diffusion
models can generate sufficiently good plans to directly track with RL-based controllers, demonstrate
control without residual forces, and control tasks involving planning and environment interaction.
Concurrent work [Hassan et al. 2023] also demonstrates full-body object rearrangement tasks
using the adversarial motion prior framework. Our hierarchical framework allows for manipulating
multiple boxes simultaneously and navigation in more diverse environments.
Loco-manipulation for humanoids is also an important topic in robotics, where prior work

demonstrates whole-body control strategies for picking and carrying a single object, [Harada et al.
2005; Arisumi et al. 2008]. The control needed to carry a stack of boxes has also been demonstrated
on a humanoid robot, e.g., [Sato et al. 2021]. The locomotion behavior is often slow or quasi-
static and heavily engineered with model-based methods. In our work we seek to develop largely
model-free methods that instead rely on recent data-driven kinematic methods in combination
with reinforcement learning for physics-based control.

2.2 Reinforcement Learning for Character Animation
Reinforcement learning (RL) has become a popular framework to generate character anima-
tions [Kwiatkowski et al. 2022], including with physics-based simulation. Prior work use RL to
generate diverse skills for virtual humans, e.g., [Peng et al. 2018; Won et al. 2020; Yin et al. 2021; Liu
and Hodgins 2018]. Diverse motion sequence can be generated by combining a motion generator
and a control policy that is trained to imitate a large range of motion capture data, e.g., [Bergamin
et al. 2019; Park et al. 2019]. They often require users to provide input such as moving direction
and speed to complete a task. Hierarchical architectures are proposed such that an RL policy can
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automatically complete high-level tasks by utilizing the low-level motor skills, e.g., [Peng et al.
2022; Merel et al. 2020; Won et al. 2022; Ling et al. 2020; Yao et al. 2022; Peng et al. 2017]. However,
they are restricted in their ability to manipulate their environments.

2.3 Kinematic Motion Generation for Character Animation
Kinematic-based motion synthesis allows for high quality motion generation with the aid of motion
capture data. Most progress has been made on modeling movement whose principal interactions
with the environment are that of the feet contacting the ground, such as the many styles and speeds
of locomotion, dancing, or isolated sports motions. Motion capture clips can be queried based on
user input, using techniques such as motion graph [Kovar et al. 2008] or motion matching [Holden
et al. 2020]. Supervised learning based techniques allow for similar capabilities with limited motion
capture data, e.g., [Holden et al. 2017; Lee et al. 2018]. Generative models can be used to synthesize
diverse motions given the same input, e.g., variational autoencoders [Ling et al. 2020; Rempe et al.
2021], and, most recently, diffusion models [Tevet et al. 2022; Tseng et al. 2022].

3 SYSTEM OVERVIEW
Our system aims to generate animations of a physically simulated character arranging the boxes by
picking them up, carrying them, and putting them down while navigating the 3D scene to achieve
the desired configuration for those boxes. Figure 2 shows an overview of our system.

Rearrangement tasks in a contextual environment require coordinated locomotion and manipu-
lation which can be broken down to four primitive motions: walk-only without objects, walk-and-
carry objects, pick-up objects, and put-down objects. We construct a simple graph to express the
sequential relationships among those primitives: an arrow from primitive A to B indicates that B
can be executed after A but not vice versa (Figure 2, middle).

Given a 3D scene and a sequence of primitives (primitive path) that respects the primitive graph,
a high-level planner generates a sequence of waypoints (root positions and heading directions in
the ground plane) for each locomotion primitive. This ensures that the character avoids collisions
in the scene while navigating to desired locations to complete a sequence of pick-up and put-down
tasks.
Once planned, each motion primitive generates or retrieves kinematic reference motion and

executes its low-level policy to track the referencemotion via physics simulation. For the locomotion
primitives, we train a diffusion model on ∼ 25 minutes of motion capture data to generate diverse
walking motions to navigate through scenes, conditioned on waypoints. Simple tracking policies
are then used to track the kinematic walking motion generated by the diffusion model. For the
manipulation primitives, i.e. Pick-up and Put-down, we use a single reference trajectory and further
rely on an environment-conditioned manipulation policy to achieve the needed variations of the
motion. The quality of the motion can also be improved, e.g., making use of motion capture data
of people picking up and putting down boxes can make the pick-up and put-down motion more
natural.

4 LOCOMOTION
We develop two locomotion primitives: Walk-only andWalk-and-carry. They use the same diffusion
model to generate kinematic whole-body reference trajectories given the waypoints, but have their
own low-level RL policy to track the reference trajectory. Examples of the motions are shown in
Fig. 3.
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Fig. 3. The two locomotion system primitives: walk-only (top) and walk-and-carry (bottom).

4.1 Diffusion-based Whole-body Motion Generator
We use a diffusion model [Sohl-Dickstein et al. 2015] to generate whole-body navigation sequences.
The diffusion model is trained with the locomotion dataset from [Starke et al. 2019]. The diffusion
model generates a full-body pose sequence from a noise sequence via an iterative denoising process.
During training, noise is added to the data and a denoising model is then trained to reconstruct the
original data from the noisy data.

4.1.1 Diffusion Process. We follow the definition of diffusion from [Ho et al. 2020] as a Markov
noising process with latents {𝒛𝑡 }𝑇𝑡=0 that follow a forward noising process 𝑞(𝒛𝑡 |𝒙), where 𝒙 ∼ 𝑝 (𝒙)
is drawn from the data distribution. The forward noising process is defined as

𝑞(𝒛𝑡 |𝒙) ∼ N (
√
𝛼𝑡𝒙, (1 − 𝛼𝑡 )𝑰 ), (1)

where 𝛼𝑡 ∈ (0, 1) are constants which follow a monotonically decreasing schedule such that when
𝛼𝑡 approaches 0, we can approximate 𝒛𝑇 ∼ N(0, 𝑰 ).

In our setting with target trajectory conditioning 𝒄 , we reverse the forward diffusion process
by learning to estimate �̂�𝜃 (𝒛𝑡 , 𝑡, 𝒄) ≈ 𝒙 with model parameters 𝜃 for all 𝑡 . We optimize 𝜃 with the
“simple” objective introduced in [Ho et al. 2020]:

Lsimple = E𝒙,𝑡
[
∥𝒙 − �̂�𝜃 (𝒛𝑡 , 𝑡, 𝒄)∥2

2
]
. (2)

4.1.2 Kinematic Motion Representation. Our diffusion model is conditioned by the waypoint vector
𝒄 = {𝒄𝑝1 , 𝒄

𝑝

2 , 𝒄
𝑑
1 , 𝒄

𝑑
2 }, which includes the target root position 𝒄𝑝 ∈ R3 and direction 𝒄𝑑 ∈ R6 for two

goal waypoints given relative to the start state of the character. The direction is represented by the
first two columns of the rotation matrix [Zhou et al. 2019].

We represent motions as sequences of poses 𝒙 = {𝒕𝑝
𝑖
, 𝒕𝑑𝑖 , 𝒕

𝑝

𝑖
, 𝒕𝑑𝑖 , 𝒒𝑖 } containing:

• The Egocentric Root Trajectory: 𝒕𝑝
𝑖
∈ R3, 𝒕𝑑𝑖 ∈ R6 are the predicted root position and direction

at frame 𝑖 relative to the starting state.
• The Goal-Centric Root Trajectory: 𝒕𝑝

𝑖
∈ R3, 𝒕𝑑𝑖 ∈ R6 are the predicted root position and

direction at frame 𝑖 relative to the next goal state.
• Predicted Joint Angles: 𝒒𝑖 ∈ R6𝑀 is the predicted joint angles at frame 𝑖 for a skeleton of𝑀
joints.
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Fig. 4. The diffusion model architecture.

Given two waypoints, our model learns to synthesize kinematic motion sequences of 2𝑁 frames
such that the first waypoint is reached at frame 𝑁 and the second is reached at frame 2𝑁 . Thus, after
the 𝑁 -th frame, the Egocentric Root Trajectories are expressed relative to 𝒄1, and the Goal-Centric
Trajectories are expressed relative to 𝒄2. We choose 𝑁 = 15 to produce waypoints that are spaced
0.5 seconds apart.

4.1.3 Bidirectional Root Control. In order to eliminate drift from generated trajectories, we adapt
the bidirectional control scheme used in [Starke et al. 2019], and represent the generated root
position/orientation in both the frame of the start pose {𝒕𝑝

𝑖
, 𝒕𝑑𝑖 } and the frame of the next waypoint

{𝒕𝑝
𝑖
, 𝒕𝑑𝑖 }. At test time, the final trajectory is calculated as the weighted average of the two generated

trajectories: 𝜆{𝒕𝑝
𝑖
, 𝒕𝑑𝑖 } + (1 − 𝜆){𝒕𝑝

𝑖
, 𝒕𝑑𝑖 }. We select 𝜆 such that it linearly decreases to zero as the

character approaches the waypoint over the course of 𝑁 frames. In practice, we find that this
technique is sufficient to eliminate drift, while predicting only the egocentric trajectory causes
discontinuous motions, as shown in the supplemental video.

4.1.4 Model Architecture and Training. The backbone of our diffusion model uses a transformer
encoder architecture with feature-wise linear modulation (FiLM) [Perez et al. 2018] units to inject
conditioning information, as seen in Fig. 4. Training takes around 3 hours on a single RTX 3080
GPU.

4.1.5 Parallel Long-formGeneration. The EDGE system [Tseng et al. 2022] introduced the technique
of parallel long-form generation with diffusion models, a technique for generating batches of short,
temporally consistent sequences such that they can be unfolded into an arbitrarily long sequence,
noting that local consistency is sufficient to approach global consistency in many motion classes.
We expand on this idea to solve the problem of tracking arbitrarily long trajectories. In this work, we
represent a trajectory as a sequence of waypoints. We find that training a model to track as few as
two waypoints at a time is sufficient to create globally consistent motions by enforcing consistency
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Fig. 5. Enforcing continuity between short sequences is sufficient to create globally smooth motions.

such that each sequence’s first waypoint matches the second waypoint from the previous sequence
(Fig. 5).

4.2 Locomotion Control Policy
Given the whole-body reference trajectory generated by the diffusion model, we use control policies
to track the reference trajectory under physics constraints imposed by a physics simulator. We
use reinforcement learning to train these policies to track the same motion data used to train the
diffusion model. RAISIM [Hwangbo et al. 2018] to simulate the rigid body dynamics and Proximal
Policy Optimization [Schulman et al. 2017] to optimize the policies. We simulate at 120 Hz, and
query the policy at 60 Hz. Training requires 24 hours on a workstation with RTX A5000 GPU and
a 12-core CPU.

4.2.1 Policy Setup. We represent our policy using a layer-wise mixture of experts neural net-
work [Xie et al. 2022]. The policy is tasked to track a reference motion that specifies the pose
of the character over time. The input to the policy consists of the state of the character and the
information about the current reference frame from the reference trajectory, namely:

• The character: The input to the policy includes the current root height 𝑝𝑧 , root linear and
angular velocity 𝒗root,𝝎root in the local coordinate frame, and the joint orientations 𝒒 and
joint velocities ¤𝒒.

• The reference frame:We compute the deviation of the root linear position, the root orientation,
and the joint orientations between the next frame in the reference motion and the current
character state, �̄�𝑝

𝑡+1 − 𝒕𝑝 , �̄�𝑑𝑡+1 ⊖ 𝒕𝑑 , and �̄�𝑡+1 ⊖ 𝒒, respectively. All vectors will be transformed
into the local coordinate frame of the character. Unlike the diffusion model, here the root
and joint orientations, 𝒕𝑑 and 𝒒, are represented as quaternions.

An imitation-based reward function is designed to encourage the policy to track the reference
motion:

𝑟joint = exp(−3∥(�̄�𝑡+1 ⊖ 𝒒)∥2),
𝑟translation = exp(−∥ �̄�𝑝

𝑡+1 − 𝒕𝑝 ∥2),
𝑟orientation = exp(−2∥ �̄�𝑑𝑡+1 ⊖ 𝒕𝑑 ∥2).
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Following [Won et al. 2020], we multiply the three reward terms so the policy receives a total
reward of 𝑟 = 𝑟joint · 𝑟translation · 𝑟orientation at each time step. Multiplicative reward function has the
benefit of preventing the policy from ignoring any of the reward terms.

We adopt an action space in which the control of the character is generated by a combination of
Proportional-Derivative (PD) control and torque control [Xie et al. 2022]. The torque applied in the
simulation for each joint is generated via

𝝉 = 𝑘𝑝 (�̄�𝑡+1 ⊖ 𝒒) − 𝑘𝑑 ¤𝒒 + 𝝉𝑎,

where 𝝉𝑎 is the action output from the policy to correct the naive PD feedback control. 𝑘𝑝 and 𝑘𝑑
are PD control gains and damping coefficients.
We found that, without any regulation, 𝝉𝑎 tends to fluctuate at a high frequency which causes

ankles to vibrate, resulting in unrealistic foot sliding artifacts. To mitigate this issue, we apply a
moving average of the policy output in simulation, i.e., the correction torque applied at time step
𝑡 + 1 will be calculated via 𝝉𝑎𝑡+1 = 0.3𝝉𝑎𝑡 + 0.7𝝉𝑎 . We further introduce a reward term to encourage
smoothness in policy output:

𝑟smooth = exp(−∥(𝝉𝑎𝑡+1 − 𝝉𝑎𝑡 )∥2).

4.2.2 Walk-only Policy. Our control policy for locomotion is trained by imitating motion capture
data of a human walking in various directions at various speeds. We use the same motion capture
dataset [Starke et al. 2019] that trains the diffusion model to train the locomotion policies. At
the beginning of each episode during training, a motion sequence is randomly sampled from the
dataset, the character is initialized to the state of the first frame of the sampled sequence, and the
reward is computed from the rollout.

4.2.3 Walk-and-carry Policy. To generate carrying behavior during locomotion, we augment the
locomotion dataset by fixing the arm to a pose that mimics object carrying. We also include the
box position and box orientation in the character coordinate frame as input to the policy. During
training, we initialize the box to be directly in front of the character between the two hands. In
addition to the standard imitation-based reward, the policy also receives a reward for placing the
hand on the opposing sides of the box and keeping the box upright:

𝑟box-hand = exp(−∥𝒑𝑙ℎ𝑎𝑛𝑑 − 𝒑𝑙𝑏𝑜𝑥 ∥2 − ∥𝒑𝑟ℎ𝑎𝑛𝑑 − 𝒑𝑟𝑏𝑜𝑥 ∥2)
𝑟box-orientation = exp(−10∥(𝒃𝑑 ⊖ 𝒃𝑑 )∥2)

where 𝒑𝑙ℎ𝑎𝑛𝑑 , 𝒑𝑙𝑏𝑜𝑥 , 𝒑𝑟ℎ𝑎𝑛𝑑 , 𝒑𝑟𝑏𝑜𝑥 are predefined points on the hands and on the box in the world
coordinate frame. 𝒃𝑑 and 𝒃𝑑 are the current and the upright orientations of the box.
The reward term for the box grabbed by the hands is defined as 𝑟base = 𝑟box-hand + 𝑟box-orientation.

When carrying multiple boxes in a stack, each box also needs to align with the box below:

𝑟box-stack = exp(−∥𝒃𝑝top − 𝒃𝑝bottom∥
2)

where 𝒃𝑝 is the position of a box. During training, we randomize the number of boxes to carry for
each episode. For each additional box 𝑖 , we add another reward term 𝑟 𝑖box which includes 𝑟box-orientation
and 𝑟box-stack for box 𝑖 . The total reward of walking and carrying 𝑃 boxes is the multiplication of all
reward terms: 𝑟 = 𝑟joint · 𝑟translation · 𝑟orientation · 𝑟base ·

∏𝑃−1
𝑖=1 𝑟 𝑖box + 𝑟smooth.
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Fig. 6. Reference motion for the pick up and put down motion.

5 MANIPULATION
We design two manipulation primitives, Pick-up and Put-down. These two primitives share the
same reference trajectory and the same low-level policy.

5.1 Manipulation Motion
A single reference trajectory is designed to train both primitives. The reference motion is shown in
Fig 6. The trajectory consists of two stages: crouching down and standing up. We modify the arm
poses to create simple pick-up and put-down motions. For pick-up, the arms linearly transition
from a rest pose to a predefined carrying pose as the character crouching down, and stay in the
carrying pose for the remaining of the motion. For put-down, the arms stay in the carrying pose
when the character crouches down and linearly transition to the rest pose as the character stands
up.

5.2 Manipulation Policy
Although we only provide the manipulation policy a rough reference trajectory, we expect the
RL policy to generalize to various scenarios such as different number of boxes with different
sizes and weights being picked up and put down at different heights. Furthermore, we would like
to have a unified policy for both pick-up and put-down. This allows us to concatenate the two
tasks repeatedly to create natural and long-horizon animation. In addition, training both tasks
simultaneously exposes the policy to a wide range of relative states, providing better generalization.
During training, an episode starts with the box lying on a platform of random height in front of the
character. The task for the policy is to pick up and put down the box on the platform repeatedly.
Training the manipulation policies requires 24 hours on a workstation with RTX A5000 GPU and a
12-core CPU.

5.2.1 Policy Setup. The input to the manipulation policy includes, the position on the platform
where the base box is placed, a one-hot vector to indicate whether the current task is to pick-up
or put-down, in addition to the input to the locomotion policies. The reward function is the same
as the one for walk-and-carry policy, with an additional reward term to guide the box to be at a
certain height at every time step:

𝑟box-height = exp
(
− 10(𝜆ℎend + (1 − 𝜆)ℎbegin − 𝑏𝑧

𝑏𝑎𝑠𝑒
)2),

where 𝑏𝑧
𝑏𝑎𝑠𝑒

is the height of the box being grabbed by the hands. The desired height is computed by
interpolating between predefined height at the beginning and the end of the manipulation period,
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where the interpolation parameter 𝜆 ranges from 0 to 1. The manipulation period for the put-down
task starts from the beginning of the reference trajectory until the lowest crouch pose is reached,
and the remaining of the trajectory is defined as the manipulation period for the pick-up task. For
pick-up, ℎbegin is the height of the platform and ℎend is defined at the torso height (1.2𝑚 from the
ground) of the character. The reverse is defined for the put-down task.

A total reward of 𝑟 = 𝑟joint · 𝑟translation · 𝑟orientation+𝑟base is use at each time step. We do not multiply
𝑟base with the rest of the reward to give the policy more flexibility to trade off between achieving
the manipulation goal and tracking the reference trajectory. We also train the policy to manipulate
multiple boxes. In that case, the total reward function is defined as 𝑟 = 𝑟joint · 𝑟translation · 𝑟orientation +
(𝑟base ·

∏𝑃−1
𝑖=1 𝑟 𝑖

𝑏𝑜𝑥
) + 𝑟smooth.

5.3 Transition Between Locomotion and Manipulation
Our system allows for the sequential execution of locomotion and manipulation primitives. Since
the manipulation policy is trained with an initial state of the character standing still in front of
the boxes and the platform, it is essential to let the character comes to a full stop at the end of the
locomotion to ensure a good transition to manipulation. Therefore, we simply add 30 − 60 frames
of standing still poses to be tracked by the locomotion policy. Transitions from manipulation to
locomotion are more challenging due to the huge differences between the actions produced by
the manipulation and the locomotion policy. We again add 30 − 60 frames of standing pose at the
end of manipulation and let both policies track the pose to produce two actions 𝒂𝑚𝑎𝑛𝑖𝑝 and 𝒂𝑙𝑜𝑐𝑜 .
The final action is a linear interpolation of the two: (1 − 𝜆)𝒂𝑚𝑎𝑛𝑖𝑝 + 𝜆𝒂𝑙𝑜𝑐𝑜 , where 𝜆 ∈ R linearly
progresses from 0 to 1 during the transition period (the added 30 − 60 frames).

6 PLANNER
We use a kinodynamic A* planner to automatically avoid in-scene obstacles and generate paths
between boxes using a single waypoint for each box location and desired pick-up orientation,
while maintaining realistic human navigation velocities and accelerations. Each planned trajectory
is smoothed with cubic splines to maintain reasonable linear and angular velocities, and goal
conditioning for the diffusion model is then sampled from the smoothed path. The choice of the A*
algorithm is arbitrary, and alternatives, (i.e. D* or RRT) could be easily substituted out-of-the-box.
An example of such a planned trajectory and the resulting whole-body motion generated by the
diffusion model is shown in Fig. 7.

7 RESULTS AND DISCUSSION
We evaluate our method by generating diverse animations of a character performing box arrange-
ment tasks in a contextual 3D scene. We also demonstrate the generalizability and robustness of our
method. Finally, we show an ablation study to validate the effect of the bidirectional root control
used in the diffusion model for locomotion.
We model the character as an articulated rigid body system, adapted from Scadiver [Won et al.

2020]. It has 59 degrees of freedom, including a floating base. We use RAISIM [Hwangbo et al.
2018] as the physics simulator. The character is controlled via Stable proportional-derivative
controllers [Tan et al. 2011].

7.1 Diversity of Rearranging Tasks
To test our pipeline end-to-end, we generated two long-horizon animations of the character
rearranging assorted boxes in two different scenes. The qualitative evaluation shows that diverse
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Fig. 7. Trajectories are generated by an A* planner, and tracked by a diffusion model.

Table 1. We test the robustness of the pick-up and put-down policy in various scenarios. The default position
of the platform to pick up and put down the boxes is (0.4, 0) meters away from the character in the frontal
plane, with a height of 0.5 meters. By default, each box weighs 1 kg with a width of 0.4𝑚𝑒𝑡𝑒𝑟 . We vary each
parameter one at a time while keeping other parameters fixed and record the extreme values for which the
policy can pick up and put down the boxes at least 3 times. We also record the training distribution.

sagittal frontal transverse weight (per box) width
training 0.35, 0.40 -0.10, 0.10 0.3, 0.7 1.0 0.3, 0.5
one 0.20, 0.68 -0.30, 0.32 0.05, 1.00 8.0 0.12, 0.79
two 0.28, 0.70 -0.29, 0.29 0.09, 0.92 3.7 0.14, 0.79
three 0.30, 0.52 -0.26, 0.28 0.13, 0.92 2.5 0.16, 0.79

animations can be easily simulated using the four motion primitives and their associated policies.
Fig. 8 and Fig. 9 demonstrate how we use our system to solve the tasks.

We further create two scenarios to demonstrate other interesting animation scenarios using our
system, namely rearranging cylinder objects and playing the Tower of Hanoi game (Fig. 10). The
full animations can be viewed in the supplemental video.

7.2 Generalizability of Manipulation Policy
During training, we varied the initial position of the platform, the height of the platform, and
the width of the boxes to generate more robust policies. We tested our manipulation policy with
different scenarios, including robustness to variation in pick-up and placing location, the weight of
the boxes, and the box width. Table 1 shows the range of each varying parameter within which our
policy can successfully complete the manipulation tasks.

7.3 Robustness of Locomotion
The combination of the diffusion model and the locomotion policies is robust to simulate a wide
range of scenarios. To test how well the diffusion model can work with the RL policies, we generate
10 trajectories of length 10 seconds using random waypoints with the diffusion model. Our RL
policy is able to track all the trajectories successfully even though the RL policy and the diffusion
model were trained independently.
We also show that the walk-and-carry policy is robust to withstand external perturbation–the

character was able to hold on to all the boxes while being hit by heavy projectiles. We also test the
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…walk-only pick-up walk-carry put-down

scene + primitive path

A* search
waypoints

diffusion model
whole-body trajectory

control policies
animation

Fig. 8. Our system can solve scene arrangement tasks where the character moves boxes around to a goal
configuration.
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scene + primitive path

A* search
waypoints

diffusion model
whole-body trajectory

control policies
animation

…walk-only pick-up walk-carry put-down

Fig. 9. We demonstrate a task that involves rearrangement of 3 boxes.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.



1:14 Zhaoming Xie, Jonathan Tseng, Sebastian Starke, Michiel van de Panne, and C. Karen Liu

Fig. 10. Our system can generate animations such as moving cylinder objects (TOP) or playing Tower of
Hanoi (BOTTOM).

Table 2. We test the robustness of the carrying policy by varying the box width and weight. We also test the
robustness by throwing projectiles from behind with a horizontal velocity of 3𝑚/𝑠 every 0.5 second for 10
seconds and record the maximum projectile weight the policy can withstand.

weight (per box) width projectile weight
training 1.0 0.3, 0.5 0
one 5.4 0.21, 0.56 3.7
two 2.1 0.23, 0.56 2.6
three 1.1 0.31, 0.60 0.9

robustness of the policy to the width and weight of the boxes being carried. Statistics of the tests
are recorded in Table 2.

7.4 Comparison To DReCon
We use a diffusion model to generate kinematic trajectory for our low-level control policy to track.
There are many other ways to generate such trajectory, e.g., motion matching [Holden et al. 2020],
as is used in DReCon [Bergamin et al. 2019]. Here we compare how well our low-level controller
can track the trajectories generated via the diffusion model and motion matching. For the diffusion
model, we generate waypoints such that the first two waypoints are at the same point and the
next 20 waypoints are spaced 0.4 meters apart so the average velocity is 0.8𝑚/𝑠 for 10 seconds. For
motion matching, we use the root velocity and orientation of the trajectory as features for motion
query and generate a motion that has 0 velocity at the first second and has 0.8𝑚/𝑠 for the next 10
seconds. Table 3 record the average performance of the low-level policy in terms of tracking the
joint, root position and root orientation. Tracking performance is higher for the diffusion model,
even though the low-level policy is never trained with the diffusion model generated data. This
indicates our diffusion model generates data that is more in distribution with the motion capture
data. DRecon use the output of the motion matching to train the control policy, which can explain
their better performance in terms of tracking the motion matching output. Furthermore, motion
matching requires storing the motion database in memory for query, which becomes unscalable
as we would want to track more diverse motion in the future. On the other hand, diffusion model
is able to condense large motion dataset into a neural network, as demonstrated by recent work,
e.g., [Tseng et al. 2022; Tevet et al. 2022].
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Table 3. We test the performance of low-level control policy in terms of tracking reward, with reference
motion generated by our diffusion model and motion matching.

𝑟joint 𝑟translation 𝑟orientation
diffusion 0.94 0.92 0.98

motion matching 0.90 0.62 0.95

Fig. 11. Errors of the bidirectional and egocentric models, compared over different reference trajectories
(𝑛 = 297). The bidirectional model performs consistently better than the egocentric model, which also shows
poor long-tail behavior with significant deviation in out-of-distribution scenarios.

7.5 Ablation on Bidirectional Root Control
We validate the bidirectional control model qualitatively and quantitatively through an ablation
study, comparing it to a model that only uses the predicted egocentric trajectory. We find that
although in simpler cases, bothmodels perform similarly on a qualitative level, challenging scenarios
involving more precise turning motions cause the egocentric model to visibly deviate from the
path, while the bidirectional model does not face these issues. We plot the average error from
reference trajectory across both models in Figure 11. The bidirectional model reduces error by 70%
on average and is more stable than its egocentric counterpart, which has poor long-tail behavior.
For qualitative examples, see our supplemental video.

7.6 Comparison to Other Hierarchical Framework.
Different designs of hierarchical frameworks have been proposed previously. Notably, Catch and
Carry[Merel et al. 2020] and Adversarial Skill Embedding (ASE) [Peng et al. 2022] train a low-level
control policies to track a wide range of motion capture data (similar to ours) and a high-level
policy to control in a learned latent space to accomplish tasks. The latent high-level action space
used by Catch and Carry can cause inefficient high-level policy training, which can take weeks to
train. ASE employs a smart design of the high-level action space, which can decrease the learning
efficiency of the low-level control policies. For example, in ASE, training the low-level policy takes
10 days with a much faster simulation engine, while our policy can be trained in one day. It is also
not clear how to learn low-level skills that can interact with objects within the ASE framework.
Our system allows for efficient training of both low-level policies and mid-level motion generators
and our high-level planner allows for the rapid design of new tasks.

Our system also has limitations compared to the two-level hierarchical framework. For example,
there is no feedback between the mid-level motion generator and the low-level controller, which can
lead to less robust behaviors under perturbation. We evaluate how root tracking errors can affect
the performance of the policy. Even though our locomotion controller can achieve high tracking
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reward for tracking the global root position, there are still tracking errors that can cause task failure.
For example, in a cluttered environment, a slight deviation from the planned root trajectory can
cause collisions with the environment. Furthermore, if the character fails to arrive at the planned
location to execute the pick-up primitive or put-down primitive, it may fail to accomplish the task.
We examine the tracking accuracy of the locomotion controller by tracking a straight walking
motion that lasts for 10 seconds with an average speed of 0.8𝑚/𝑠 . The final root position has a
maximum 0.5 meter error in the forward direction and 0.15 meter error in the lateral direction.
Since the policy can observe the tracking error and constantly try to catch up or slow down, it
can exhibit artifacts such as stumbling behaviors and sometimes bump into the environment (see
video for some of these artifacts). Control policy with high root tracking accuracy is essential for
completing tasks that span longer time or in a more cluttered environment.

In addition, our high-level planner requires a predefined primitive path, which can generate less
natural transition between primitives. For example, our character needs to assume a standing pose
before transitioning from a locomotion primitive to a manipulation primitive. It is also hard to
generate a natural stepping sequence using the A* planner. For example, generating side stepping
behaviors when getting close to the target location, or generating backward steps to avoid collision
with the platform after picking up an object.

8 CONCLUSIONS
We demonstrate physically simulated characters that can fetch, carry, place and stack objects
in their environments. These types of abilities to interact with the environment are critical for
fully realizing physics-based worlds with everyday human behaviors, whether in simulation or
in robotics. We also show that diffusion models can be used as an effective mid-level planner –
they provide motions of sufficient quality that their output can be directly tracked with RL-based
online imitation controllers. We further demonstrate how to add object interactions to low-level
RL-driven physics-based imitation methods.
Our work has a number of limitations that also point to future work. Our system currently

consists of a number of discrete controllers. A future avenue for exploration could investigate
developing a single diffusion model that generates the mid-level motion plan for all phases of all
tasks. This could then be used in conjunction with a single low-level controller that is also capable
of all the phases of loco-manipulation tasks. With a unified model, our current limitation during
transitions between manipulation and locomotion can be resolved. Dynamic replanning with the
diffusion model would be a natural approach to making the behaviours robust to unexpected events.
Obstacle avoidance can also potentially be incorporated into the diffusion model. We wish to be
able to carry and manipulate heavy boxes. This is likely to require hand models with fingers that
can wrap around the bottom of the box or to grab box handles. Carrying and moving heavier
objects is also likely to require learning to use the full body to provide support while carrying them.
Lastly, additional fidelity to human motion may be achieved via modeling of gaze, biomechanical
models, and controllers that learn richer manipulation.
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