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Abstract— Recent advances in deep reinforcement learning
(RL) based techniques combined with training in simulation
have offered a new approach to developing control policies for
legged robots. However, the application of such approaches to
real hardware has largely been limited to quadrupedal robots
with direct-drive actuators and light-weight bipedal robots with
low gear-ratio transmission systems. Application to life-sized
humanoid robots has been elusive due to the large sim-to-real
gap arising from their large size, heavier limbs, and a high
gear-ratio transmission systems.

In this paper, we present an approach for effectively over-
coming the sim-to-real gap issue for humanoid robots arising
from inaccurate torque tracking at the actuator level. Our key
idea is to utilize the current feedback from the motors on the
real robot, after training the policy in a simulation environment
artificially degraded with poor torque tracking. Our approach
successfully trains an end-to-end policy in simulation that can
be deployed on a real HRP-5P humanoid robot for bipedal
locomotion on challenging terrain. We also perform robustness
tests on the RL policy and compare its performance against
a conventional model-based controller for walking on uneven
terrain.

I. INTRODUCTION

As conventional model-based approaches for humanoid
locomotion continue to improve, such as those based on
preview control [1] or model predictive control (MPC) [2],
their robustness against unexpected disturbances and inaccu-
rate modeling is still an elusive research goal. On the other
hand, rapid advancements in RL-based control methods for
legged locomotion have shown outstanding performance in
unstructured, and uncontrolled environments for quadrupedal
robots [3], [4], [5], [6] and even bipedal robots [7], [8], [9].
It would be appealing to apply similar methods to develop
walking controllers for larger and heavier humanoid robots
too.

Training a capable policy using deep RL is data intensive
and can be damaging to the hardware. Physics simulation
environments offer a safe way to collect a large amount
of data, so policies are typically trained in simulation and
then transferred to the real system. However, the simulated
environment can fail to capture the richness of real-world
dynamics. This gives rise to the “reality gap”, more com-
monly known as the sim2real gap. The sim2real gap can
cause the performance of a policy trained in simulation to
drop drastically when deployed on the real hardware. In
the case of life-sized humanoid robots such as the HRP-
series humanoids, this gap can have a more critical effect
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Fig. 1: HRP-5P humanoid robot trained to perform bipedal locomotion via
model-free reinforcement learning in MuJoCo (top); RL policy transferred
to the real robot (bottom). We make use of the feedback from measured
actuator current to account for the poor torque tracking on the real system.

on the robot’s stability during walking, compared to the
quadrupedal robots or lightweight bipedal robots that are
used in most of the recent works. Furthermore, these robots
have heavy limbs to support a heavy upper body, which
requires a high gear-ratio transmission system with a large
output torque range. Consequently, the actuators used have
relatively large armature (also known as rotor inertia) and
low backdrivable joints. High gear-ratio also induces other
hard-to-model but non-trivial effects such as joint friction and
back-EMF. This makes the sim2real gap for a robot such as
HRP-5P (Figure 1) much larger than the lighter and more
backdrivable bipedal systems like Cassie and Digit. Hence,
the suitability or relevance of recent sim2real successes in
the literature for this robot is a matter of investigation.

In this paper, we develop a system to train bipedal walking
controllers in simulation and deploy them on a HRP-5P hu-
manoid robot. HRP-5P is a high-power, electrically-actuated,
53 degrees of freedom (DoF) humanoid robot weighing over
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100kg, with a height of 182cm [10]. Our key insight is that
the sim2real gap is mainly a result of poor torque tracking
due to the effect of back-EMF. We simulate the back-EMF
effect during training and develop a policy that incorporates
current feedback from the motors. The resulting policy learns
to actively use the current feedback signal and compensate
for the inaccurate torque-tracking within the motor drivers.
We then successfully deploy this policy on a real HRP-
5P robot. Notably, our experiments show that it is possible
to bridge the “reality gap” without relying on memory-
based policy architectures or resorting to unreasonably wide
randomization of dynamics parameters.

To the best of our knowledge, this is the first demon-
stration of an end-to-end policy for controlling a life-
size humanoid robot to achieve dynamic stability. We
demonstrate locomotion over uneven and compliant surfaces.
The policy runs onboard the robot; and can receive user
commands via a joystick. We also compare the qualitative
performance of the RL policy to an open-source model-based
walking controller over the same surfaces.

II. RELATED WORK

A. Reinforcement Learning and Sim-to-Real for Legged
Robots.

Reinforcement Learning has become a powerful approach
for synthesizing controllers for legged robots. Control poli-
cies are typically trained in simulation and then transferred to
the hardware, i.e., sim-to-real. A large number of such works
focus on quadrupedal robots, e.g., ANYmal[4], Laikago[11],
A1[5], Jueying[12] and Mini-Cheetah[3]. There are also
successes in applying the same approach for bipedal robots,
e.g., on the Cassie [7], [13], [14], Digit[15], [16] and
NimbRo-OP2X[17]. DeepWalk [17] demonstrates a single
learned policy for a real humanoid robot that can achieve
omnidirectional walking on a flat floor. However, it is unclear
whether the robot can achieve a dynamically stable walk.
The robot platform also appears to have relatively large feet
which may help the robot to avoid falls even under a fragile
RL policy.

Important ingredients for successful sim-to-real include (1)
careful system identification, e.g, a learned actuator model
is incorporated in the simulator to account for hard-to-model
actuator dynamics [4], [18], (2) dynamics randomization[19],
where simulation parameters such as mass and inertia are
randomized to improve robustness of the policy (3) domain
adaptation, where the policy learns to adapt based on the
history of observations and actions, e.g, [6], [5], [13]. While
successful on several legged robot platforms, we are yet to
see such approaches being successfully applied to life-size
(e.g., more than 170cm) humanoid robots with heavy limbs.
This is not due to lack of attempt, prior work has explored
how to apply reinforcement learning to the NASA Valkyrie
robot, e.g., [20], but so far no sim2real is demonstrated. In
this work, we demonstrated the first sim2real success on such
a platform, with a focus on how the choice of input to the
policy and accurate modeling of the system play important
roles.

Again, implementing learned policies on the hardware of a
bulky humanoid robot, such as Valkyrie and the HRP-series
robots, presents significantly greater challenges than lighter
bipedal robots, such as Cassie. Safety risks are also amplified
in the case of a bigger robot with powerful actuators.

B. Control for Humanoid robots.

Conventional model-based approaches for humanoid
bipedal locomotion consist of local feedback controllers to
track Zero-Moment-Point (ZMP) or Center-of-Mass (CoM)
trajectories precomputed in an offline process. Stabilization
control through the use of divergent component of motion
(DCM) has been extensively studied in prior works [21],
[22] and applied to real robots. It relies on the linear inverted
pendulum model [23] of bipedal walking. Other recent works
such as [1], on the other hand, do not rely on biped-
specific dynamics and instead perform online generation of
centroidal trajectory based on preview control for impressive
multi-contact motion. The method uses a preview control
scheme to generate a centroidal trajectory and a stabilization
scheme to correct errors in tracking the trajectory. Since the
trajectory is generated online the robot can react robustly to
environmental disturbances.

Generally, the output of such controllers is in the form
of desired ZMP, CoM, and/or contact wrenches, which are
then fed to Quadratic programming (QP) solver to compute
desired joint positions. The desired joint positions are then
tracked by a local proportional-derivative (PD) controller
for stiff position control. This is in sharp contrast to RL
approaches mentioned above that use low PD gains to
achieve compliant tracking.

III. BACKGROUND

The motor control system on the HRP-5P robot (and
generally, on most robot transmission systems) is shown
in Figure 2. The block structure consists of a PD con-
troller which computes the desired torque command given
the reference position from a higher-level controller and
measured position from the joint encoder. The desired torque
command - or equivalently, the current command (assuming
a proportional relationship between torque and current for
a brushed-DC motor) is then sent to a proportional-integral
(PI) controller. The PI controller tries to track the current
command given the measured current from the current sensor
in the motor. The output of the PI controller is fed to the
motor power amplifier, which in turn drives the motor.

The key observation here is that the PI controller is unable
to precisely track the torque commands, as desired by the
higher-level controller or policy, often leading to significant
torque tracking errors. We suspect that such tracking errors
could be caused largely due to the effect of the back electro-
motive force (EMF). When the motor rotates, the back-
EMF creates a counter-voltage that opposes the applied
voltage, reducing the current flowing through the armature,
leading to tracking errors. This makes the real system vastly
different from simulation environments where the desired
torque command is applied exactly to the actuator without



Fig. 2: Block diagram of the motor control system in HRP-5P. The
torque computed by the PD controller is tracked by a PI current controller,
albeit, with significant tracking errors. These tracking errors form a crucial
component of the sim2real gap.

errors. Other factors such as the battery voltage, resistance
of the transmission cables, changes in load, or poorly tuned
gains of the PI controller may also contribute to poor current
tracking.

IV. APPROACH

In this section, we detail each component involved in
training the RL policy. The training is performed in the
MuJoCo simulator [24]. In particular, we describe how we
overcome the poor torque-tracking on the real robot by
simulating Back-EMF effect and using current feedback
for the policy. Since the current and torque on the robot’s
actuators are assumed to be proportional, we use the terms
interchangeably through the paper.

A. Observations and actions.
Similar to prior work in simulation [25], the input to our

policy consists of the robot state, the external state, and a
clock signal. The robot state includes the joint positions and
joint velocities of each actuated joint (6 in each leg), roll and
pitch orientation and angular velocity of the root (pelvis).
And, more relevant to the contributions of this work, we
include the motor-level torque signal for each actuator in the
robot state. In simulation, this signal is equal to the actual
torque applied to the actuators in the previous timestep. On
the real robot, it needs to be derived from the raw current
measurements, as explained in V-B. The external state vector
comprises of a 3D one-hot encoding to denote the walking
mode — [0, 0, 1] for standing and [0, 1, 0] for stepping in-
place and [1, 0, 0] for walking forward. It also includes a
1D scalar which acts as a reference value depending on the
mode: If the active mode is Stepping, the reference value
denotes the turning speed; for Walking it denotes forward
walking speed; and is ignored for the Standing mode.

The policy also observes a clock signal that depends on a
cyclic phase variable φ. This variable is also used to define
a periodic reward term in our reward function to generate
walking behaviors. As in [25], we do a bijective projection
of φ to a 2D unit cycle:

Clock =

{
sin

(
2πφ

L

)
, cos

(
2πφ

L

)}
, (1)

where L is the cycle period. φ increments from 0 to 1 at
each control timestep and reset to 0 after every L timesteps.
Clock is then used as input to the policy.

The policy outputs desired positions of the actuated joints
in the robot’s legs. These predictions from the network are
added to fixed motor offsets corresponding to the robot’s
half-sitting posture. The desired positions are tracked using
a low-gain PD controller, which computes the desired joint
torque as follows:

taupd = Kp(qdes − q) +Kd(0− q̇), (2)

where Kp and Kd denote the proprotional and derivate gain
factors respectively. qdes is the policy prediction summed
with the fixed motor offsets. q and q̇ denote the current joint
position and velocity.

B. Reward function.

Our reward design ensures that a reference motion is
not needed. Instead, we rely on several hand-crafted reward
terms that promote the desired robot behavior in 3 modes:
stand in place, step in-place (including turning) and walk
forward given a reference speed. This requires the robot
to develop a periodic bipedal gait, follow the mode and
reference velocity command and maintain a fixed height.
Further, we introduce terms to develop a more realistic
motion that will allow sim2real transfer in a realistic and
safe manner.

Bipedal Walking. We introduce reward terms for pro-
moting a symmetrical bipedal walking gait characterized by
a periodic motion of the legs, alternating between double-
support (DS) phases, and the single-support (SS) phases.
Depending on the phase variable φ and the desired mode
(standing or walking), the rewards for feet ground reaction
forces (GRF) and body speeds are computed.

For example, when φ lies in the first single-support region
of the gait cycle (the left foot is in the swing phase and the
right foot is in the support phase), larger values of GRF on
the left foot are rewarded negatively while larger values of
GRF on right foot lead to positive reward. Simultaneously,
higher speeds for the left foot are incentivized but penalized
for the right foot.

The definition of the bipedal walking terms — ground
reaction forces at the feet rgrf and the feet body speeds rspd
— are adopted exactly from [25]:

rgrf = Igrfleft(φ) · Fleft + Igrfright(φ) · Fright (3)

rspd = Ispdleft(φ) · Sleft + Ispdright(φ) · Sright (4)

where Fleft and Fright denote the GRF and Sleft and Sright

denote the body speeds on the left and right foot respectively.
We refer the reader to [25] for a detailed explaination of the
“phase indicator” functions Igrf∗ and Ispd∗ for modulating
the reward coefficients for ground reaction forces and feet
speeds.

For standing, the DS phase is expanded to span the entire
gait cycle, and the policy is rewarded to maximize ground
reaction forces on both feet while minimizing the feet speeds.



Root Velocity, Orientation and Height. The root linear
velocity reward term is a simple cost on global speed xvroot
of the root link of the robot in the x-direction.

rrv = exp(−10 · ‖ xvroot − xv̂root‖2) (5)

The root yaw velocity term encourages the angular ve-
locity of the root ωroot to be close to the desired velocity
ω̂root.

rav = exp(−10 · ‖ωroot − ω̂root‖2) (6)

During training, the active mode is randomly selected
between Standing, Stepping, and Walking at the start of an
episode. Depending on the active mode, the scalar input for
the reference value is sampled from a uniform distribution,
i.e., xv̂root from a range of [0, 0.4]m s−1 if mode is Walking
and ω̂root from a range of [−0.5, 0.5]rad/ sec if mode is
Standing.

We also reward the policy to maintain the root height hroot
at a desired value ĥroot = 0.79m:

rheight = exp(−40 · (hroot − ĥroot)2). (7)

Safe and realistic motion. In addition to the above terms,
we also try to create a motion that remains close to the
nominal posture of the robot to avoid unnecessary sways.
This is critical for safe deployment on the real robot, which
has a wide range of motion and significantly strong actuators.

To encourage the robot to maintain an upright posture,
we use a reward term to minimize the distance between the
floor projection of the head position x,yphead and the root
position x,yproot. This prevents the robot from developing
a leaned-back behavior and excessively swaying the upper
body:

rupper = exp(−10 · ‖ x,yphead − x,yproot‖2). (8)

We use a term to penalize the distance of the current
joint positions q from the nominal “half-sitting posture”,
qnominal:

rposture = exp(−‖q− qnominal‖2). (9)

We also place a penalty on joint velocities q̇ above 50%
of the maximum joint velocity q̇lim.

rjv = exp

−5× 10−6
∑

q̇>k·q̇lim

‖q̇‖2
 . (10)

The full reward function is given by:

r = w1rgrf + w2rspd + w3rrv + . . .

w4rav + w5rheight + w6rupper + . . .

w7rposture + w8rjv, (11)

where, the weights w1, w2, w3, w4, w5, w6, w7, w8 are
set to 0.225, 0.225, 0.100, 0.100, 050, 0.100, 0.100, 0.100,
respectively.

C. Dynamics Randomization.

Since policies trained in simulation interact with an imper-
fect representation of the world, they are prone to overfitting
and show brittleness on the hardware. A common approach
to overcome this is to randomize various robot model and en-
vironment parameters, such as mass, intertia, motor strength,
latency, ground friction, etc [13], [5].

In our work, we carefully select the variables that are
needed to be randomized for a better transfer. Firstly, we
can expect the mass and position of the center of mass
(CoM) of each link to be different on the real system than
in the simulation, due to the distribution of electronics and
mechanical parts within a link. We randomize the mass of
each link by 5% and randomize the CoM positions by 5cm
at the start of each episode during training.

Secondly, prior work shows there exists a significant
amount of friction between the motor and the load [26] in
geared transimision systems. This frictional torque is difficult
to identify or even model in simulation. MuJoCo allows
the simulation of static friction and viscous friction. Hence,
we randomize the static friction magnitude in the uniform
range of (2, 8)Nm and coefficient for viscous friction in
the uniform range of (0.5, 5)Nm/rad s−1, based on coarse
identification performed in [26].

Besides the mass, CoM positions, joint friction, we do
not randomize any other robot dynamics parameters during
training.

D. Terrain Randomization.

In order to enable the real robot to walk robustly over
uneven terrain, we expose the policy to randomized terrains
during training. In MuJoCo, the terrains are represented using
a height fields - a 2D matrix comprising of elevation data.
As generating new height fields online during the training
may cause slowness during training, instead, we generate
one random height field at the start of the training and
then randomize its relative position to the flat floor in each
episode. The flat ground plane and the height map are
simulated simulatenously, so that the floor resembles a terrain
with obstacles of varying heights scattered randomly. In this
way the robot is explosed to unevennes of maximum height
of 3.5 cm. The introduction of terrain randomization in this
work is done uniformly through the training; but it could
also be done gradually according to a curriculum to promote
smoother learning.

E. Simulating Back-EMF.

In order to simulate the phenomenon of poor torque
tracking (observed on the real system), during the training
phase, we introduce a modification to the applied torque
for each joint at each simulation timestep. The modification
is implemented by injecting a counter-torque that scales
with the joint velocity, specifically, by using the following
equation:

tauapplied = taupd − kbemf × q̇, (12)



where, taupd denotes the torque at the output of the PD
controller, and q̇ represents the joint velocity. The damping
coefficient, kbemf , is unknown for the real system. During
training, we randomize kbemf to simulate different tracking
behavior. The coefficient for each joint is sampled uniformly
within [5, 40] at every 100ms.

V. EXPERIMENTS

A. RL Policy

Training Details. As in [25], both the actor and critic
policies are represented by MLP architectures to parameter-
ize the policy and the value function in PPO. Both MLP
networks have 2 hidden layers of size 256 each and use
ReLU activations. Each episode rollout spans a maximum of
400 control timesteps (equivalent to 10 s of simulated time),
and may reset if a terminal condition is met. Each training
batch holds 64 of such rollouts. The learning rate was set
to 0.0001. We use the LOSS method [8] , which adds an
auxiliary loss term (in addition to the original PPO loss term)
to enforce symmetry. Training the policy takes around 12
hours to collect a total of 120 million samples for learning
all modes, on a AMD Ryzen Threadripper PRO 5975WX
CPU with 32 cores.

B. Implementation on Real Robot.

We propose to include the actual applied torque in the ob-
servation vector to our RL policy. As mentioned previously,
the applied torque on the real robot is extracted from the
measurements of the current sensors in the motor drivers.
The measured current is multiplied by the torque constant
and the gear ratio corresponding to the joint and fed to the
policy. It is important to note that the applied torque here
refers to the torque applied at the level of the actuator. The
torque applied to the load (i.e. the robot link) cannot be
measured on the HRP-5P robot due to absence of joint torque
sensor. The difference between the actuator-level torque and
the joint-level torque can in fact be quite significant due to
the presence of static friction and viscous friction.

The policy is executed on the control PC of the robot
(specifications: Intel NUC5i7RYH i7-5557U CPU with 2
cores, Ubuntu 18.04 LTS PREEMPT-RT kernel), and is
implemented as an mc-rtc1, controller in C++. The inference
is done at 40Hz with the PD controller running at 1000Hz.
Policy inference is quite fast, taking only around 0.2ms. The
global run of the controller is around 1ms.

C. Sim-to-sim Validation.

While we use MuJoCo as the training environment, we
perform thorough evaluations also in the Choreonoid simu-
lator before real robot deployment. Choreonoid is tradition-
ally a more popular choice for simulating humanoid robot
controllers [27]. We use the mc-rtc control framework for
executing the policy onboard the control PC of the robot.

This allows us to evaluate the same controller code trans-
parently in 3 different environment: (1) in MuJoCo using

1https://jrl-umi3218.github.io/mc_rtc/index.html

Fig. 3: Sim-to-sim validation. Simulating HRP-5P in Choreonoid (left)
and MuJoCo (right) using the mc-openrtm and mc-mujoco interfaces
respectively.

Fig. 4: Real experiment logs for torque tracking on the right hip roll
joint for the baseline policy (top) and the policy trained with our proposed
approach (bottom). We observe that the torque tracking becomes unstable
for the baseline policy (circled), when the robot is turning and an audible
noise can be heard from the joint. Such effects are not observed with the
proposed approach, and the robot behaviour looks much more stable.

the mc-mujoco interface [28], (2) in Choreonoid and (3)
on the real robot, both using the mc-openrtm interface for
communicating with OpenRTM middleware [29] used in the
HRP robots and Choreonoid simulator.

We found the contact modelling in Choreonoid to be
more stable than the contact modelling for height fields in
MuJoCo. Hence, Choreonoid forms an important part of
our pipeline for evaluating policies on uneven terrain before
real robot deployment. Nevertheless, besides some small
differences, we did not observe any major discrepancies
in the policies behavior between MuJoCo and Choreonoid

https://jrl-umi3218.github.io/mc_rtc/index.html


during evaluation.

D. Ablation study.

We perform ablation on the two main ingredients proposed
in this work for sim2real success - (1) training with simu-
lated poor torque-tracking and (2) providing torque feedback
to the policy.

Although real robot experiments are expensive and testing
of policies that are prone to failure can be dangerous,
developing a test environment in simulation is not a credible
alternative. We found that policies that succeed in simula-
tion even in very challenging circumstances (like degraded
torque tracking, uneven terrain, external perturbations), can
still behave undesirably when deployed on the real robot;
indicative of a large and critical reality gap. Hence, it is
important to study the behaviour of the policies on the real
system. We train 3 different policies to analyze the impact
of the proposed approach:

1) Policy A forms the baseline policy. It is trained
without simulated poor torque-tracking and without
observing the current feedback from the actuators.
When deployed on the real robot, this policy gives the
worst peformance. The robot is prone to self-collision
between the feet when the swing leg lands on the
ground. This points to the difficulty faced by the policy
in controlling the real robot’s leg swing motion. This
is because the policy is trained with perfect tracking in
the simulation environment but is exposed to degraded
tracking on the real robot. Further, we attempt to train
another policy with an additional termination condition
on the feet distance (d < 0.2m) to promote a wider
stance. In this case, self-collision is prevented on the
real robot but we can observe that the torque-tracking
becomes unstable in some regions of the motion with
an audible noise heard from the joints (see Figure 4).

2) Policy B is trained with poor torque-tracking but
without torque feedback. We replace the inputs cor-
responding to the torque-feedback with the 0 vector
during training and evaluation, while keeping all other
parameters the same. This policy appears robust in the
simulation environment. However, when deployed on
the real robot, we again observe the self-collision be-
tween the feet. The speed of the swing leg is also con-
siderably higher, meaning that the policy finds it harder
to compensate for the changing discrepancy between
command and applied torque. From this observation,
we conclude that providing the torque feedback (from
the measured current) is vital for the policy to adapt
to the degraded torque tracking environment.

3) Policy C is trained using the proposed approach of
simulating poor torque-tracking plus providing feed-
back from current measurements to the policy. This
policy appears significantly more stable on the real
robot. Self-collision is not observed and there is no
audible noise during any part of the motion. The robot
could successfully walk upto several meters, including
turning, stepping in-place and standing. The robot

Fig. 5: Torque-tracking performance on the RKP joint for 3 policies.
Policy A is trained without back-emf effect in sim and without feedback.
Policy B is trained with back-emf but without feedback. Policy C is trained
with back-emf and with the torque (current) feedback. Policy A and B
both lead to self-collision between the feet (circled in red) while C is
able to perform stable walking. An important observation leading to the
developments in this work, is that even though the output of the RL policy
is in the form of “desired joint positions”, the robot can make environmental
interaction only by applying torques on the links. Since there is mismatch
between the PD torque exerted by the policy and the actual torque applied
at the motor on the real systems, the policy needs to be trained to account
for this discrepancy for improved sim2real transfer.

could also walk over uneven terrain consisting of rigid
and soft obstacles upto 2 cm high.

We further analyze the real robot experiment logs corre-
sponding to the 3 policies in Figure 5 for torque-tracking
on the “RKP” (right knee pitch) joint. The “RKP” joint is
chosen because the tracking errors are more noticeable for
this joint. And also because the knee joint is expected to
have a more consequential impact on the walking behavior
(than compared to the hip yaw joint, say). We observed self-
collision between the feet in case of Policy A and Policy
B, while Policy C can perform stable walking and handle
uneven terrain well. The tracking for the “RKP” joint for A
and C looks somewhat similar, however, in case of Policy C,
the feedback allows the policy to react to the tracking error



in the previous timestep and achieve better control on the
swing motion. For B, the tracking is observed to be much
worse. Tracking for “RCR” (right hip roll) joint for Policy
A (retrained for wider feet distance) and C are also showng
in Figure 4.

Notably, providing the torque feedback will not eliminate
tracking errors because it is difficult for the policy to antic-
ipate the errors in the future. We believe that incorporating
history data in the observation space will also be beneficial.

E. Comparison to model-based controller.

We compare the robustness of our policy for locomotion
on uneven terrain to an existing model-based controller for
humanoid locomotion. For the test, we use the open-source
BaselineWalkingController, which provides an implementa-
tion of walking control based on linear inverted pendulum
mode (LIPM). This method combines online CoM trajectory
generation based on preview control, ZMP feedback based
on the divergent component of motion (DCM) of LIPM, and
foot contact force control based on the damping control law
[30], [23].

Our test environment consists of a stack of padded carpet
tiles, each of thickness 0.6 cm, placed on a flat floor. The
robot starts from some distance ahead of the stack and needs
to go across while stepping on top of the stack. Since the
tiles are made from a soft material, the obstacle forms a
compliant support surface - which is more challenging from
a balance perspective. The BaselineWalkingController could
succeed on a stack of 3 tiles but failed on a stack of 4 tiles
(nearly 2.4 cm in height) — the robot loses balance and falls
when the support leg is on the stacked carpets. On the other
hand, the RL policy trained with our approach could succeed
on a stack of 5 carpets (= 3 cm high) on 2 of 2 trials. The
policy also succeeds in making several partial contacts on
the obstacle, where the foot is placed partially on the stack.
(The tests are shown in the supplementary video.)

While there exist newer model-based approaches for hu-
manoid locomotion that may provide greater robustness [1],
[2], our test still provides valuable insights into the robust-
ness of model-free RL polcies against LIPM-based bipedal
locomotion controllers. The critical factors responsible for
the higher robustness in the case of controllers based on
deep RL is subject to debate, but we believe the low PD
gains, feedback nature of the policy, and the absence of strict
constraints on feet trajectories, may play an important role.

VI. CONCLUSION

In this work, we developed a system to train control poli-
cies for a life-sized humanoid robot HRP-5P. We identified
that the main sim2real gap for these types of large robots
arises from poor torque tracking of the motor control systems
due to high gear-ratio. We simulated back-EMF and applied
torque feedback to the policy to combat the sim2real gap.
Policies were trained in simulation and directly transferred
to the hardware.

Our experiments show that providing the current feedback
is a key ingredient for reliable sim2real transfer. Without the

proposed feedback signal, the policy is prone to failure in
controlling the leg swing motion, often causing self-collision
between the legs. We could not achieve sim2real success
without simulating poor torque tracking during training. For
robots with joint-level torque sensors, we believe our pro-
posed approach can yield better performance by accounting
for the frictional torque in the joints.

An important aspect of our findings was that we did not
need to perform tedious manual tuning of the reward function
or randomizing dynamics variables to wide, unreasonable
ranges (an often omitted part from the literature). It points
to the potential effectiveness of an accurate robot model
for training as well as careful identification of key factors
responsible in overcoming the reality gap.

We compared the RL policy to a conventional model-
based approach for bipedal locomotion on the real humanoid
platform and obtained encouraging results. The RL policy
could handle obstacles over 3 cm while the robot lost balance
and falls with the model-based controller for obstacles over
2 cm. We release the source code for RL training and
evaluation in MuJoCo for reproducibility 2. The model-based
controller is also public 3.

In the future, we plan to expand the framework for
developing a policy for backwards locomotion and tackle
even more challenging terrain. We also hope to identify and
overcome other factors inhibiting better sim2real transfer.
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